CENERALIZED FACTOR ANALYSIS

PART II

APPLICATIONS

Paul Horst

This Study Was Supported in Part by
Office of Naval Research Contract Nonr - 477(33)

and

Public Health Research Grant 2 ROL MH00743-14

Principal Investigator: Paul Horst

Reproduction in whole or in part is permitted for any purpose of the United States Government

April 1969

University of Washington

Seattle, Washington

This document has been approved for public release and sale; its distribution is unlimited.

D D 20 1969

Reproduced by the CLEARINGHOUSE for Federal Scientific & Technical Information Springfield Va. 22151

GENERALIZED FACTOR ANALYSIS

Part I Rationale

- 1. The Data Matrix
- 2. Origin Transformation
- 3. Scale Transformation
- 4. The Loss Function
- 5. Scale Free Scaling
- 6. Simple Structure
- 7. The Factor Score Matrix
- 8. Generalized Scaling and Loss Function
- 9. The Simple Structure Transformation
- 10. Simple Structure Factor Scores

Part II Applications

- 11. The Data Sets
- 12. Experimental Results
- 13. Discussion and Conclusions
- 14. Computer Programs

CHAPTER 11

THE DATA SETS

The methods developed in the previous chapters were applied to twelve different sets of data. These will now be described.

11.1 Primary Mental Abilities

Thurstone and Thurstone (1941) administered 60 tests to 710 eighth grade students. The intercorrelations analyzed were taken from nine of these tests. The first three of these were verbal tests, the next three spatial, and the last three numerical, as follows:

- 1. Sentences
- 1. Vocabulary
- 3. Completion
- 4. Flags
- 5. Figures
- 6. Cards
- 7. Addition
- 8. Multiplication
- 9. Three higher

11.2 Twenty-Four Psychological Tests

This set of correlations comes from a battery of twenty-four psychological tests given to 145 seventh and eighth grade school children in a suburb of Chicago. The initial data were gathered by Holzinger and Swineford (1939). The data have subsequently been analyzed by a number of investigators including Holzinger and Harmon (1941), Kaiser (1958), Neuhaus and Wrigley (1954), Harmon (1967), and others, so that the characteristics of the data have come to be well known. The tests are identified as follows:

1.	Vigual perception	13.	Straight-curved capitals
2.	Cubes	14.	Word recognition
3•	Paper form board	15.	Number recognition
4.	Flags	16.	Figure recognition
5•	General information	17.	Object-number
6.	Paragraph comprehension	18.	Number-figure
7.	Sentence completion	19.	Figure-word
8.	Word classification	20.	Deduction
9•	Word meaning	21.	Numerical puzzles
10.	Addition	22.	Problem reasoning
11.	Code	23.	Series completion
12.	Counting	24.	Arithmetic problems

11.3 Thirty-Three Variable Speed Study

These data are from a study by Lord (1956) designed to investigate the speed factor. Tests were administered to 649 students in the entering class at the United States Naval Academy at Annapolis. The tests were designed to measure verbal, a spatial, and arithmetic reasoning ability. In each area, seven tests were administered. One was the regular admissions examination denoted by (A). The remaining six were short experimental tests parallel in content but different in degree of speededness. Two designated (L) involved virtually no speed, one was moderately speeded (M), and the remaining three (S) were highly speeded. Six reference factor tests designated by (R) were also included. In addition, grades in six areas designated (G) were included as variables. The 33 variables are as follows:

ı.	Word fluency (R)	18.	Arithmetic reasoning (L)
2.	Verbal (A)	19.	Arithmetic reasoning (M)
3•	Vocabulary (L)	20.	Arithmetic reasoning (S)
4.	Vocabulary (L)	21.	Arithmetic reasoning (S)
5•	Vocabulary (M)	22.	Arithmetic reasoning (S)
6.	Vocabulary (S)	23.	Number speed (R)
7•	Vocabulary (S)	24.	Number speed (R)
8.	Vocabulary (S)	25.	Cancellatica (R)
9•	Spatial relations (A)	26.	Picture discrimination (R)
10.	Intersections (L)	27.	Number checking (R)
11.	Intersections (L)	28.	English (G)
12.	Intersections (M)	29.	Foreign language (G)
13.	Intersections (S)	30.	Engineering drawing and descriptive geometry (G)
14.	Intersections (S)	21	
15.	Intersections (S)	31.	Chemistry (G)
1.6.	Mathematics (A)	32.	` ,
17.	Arithmetic reasoning (L)	33•	Conduct

11.4 Thurstone Twenty-Variable Box Problem

These data are from the classical study by Thurstone (1947) designed to illustrate the principle of simple structure. Measurements of a random collection of thirty boxes were made. The three dimensions X, Y, and Z were recorded for each box. A list of 26 arbitrary score functions was then prepared. Twenty of these functions were included as variables in our analysis. These are as follows:

1.	x
2.	Y
3•	Z
4.	XX
5•	XZ
6.	YZ
7.	x^2y
8.	xx^2

9. x²z

10. XZ²

11.
$$y^2z$$

12. yz^2
13. $2x + 2y$
14. $2x + 2z$
15. $2y + 2z$
16. $\sqrt{x^2 + y^2}$
17. $\sqrt{x^2 + z^2}$
18. $\sqrt{y^2 + z^2}$
19. xyz
20. $\sqrt{x^2 + y^2 + z^2}$

11.5 Eight-Variable Body Type Measures

These data are from a study of eight physical variables by Mullen (1939). The data have been used for illustrative purposes by Harmon (1967) and by Kaiser and Caffrey (1965). The variables are as follows:

Height
 Arm span
 Length of forearm
 Length of lower leg
 Weight
 Bitrochanteric diameter
 Chest girth
 Length of lower leg
 Chest width

11.6 Twelve-Variable Anthropometric Measures

These data are from a factor analysis by Hammond (1942) involving twelve body measurements on adult men. Hammond attempted to interpret the resulting factor matrix without rotation of axes. Later Thurstone (1946) reanalyzed the data rotating to simple structure. The variables are as follows:

1.	Stature	7.	Chest depth
2.	Sitting height	8.	Head length
3.	Shoulder breadth	9•	Head breadth
4.	Hip breadth	10.	Head height
5.	Span	11.	Hand length

11.7 Fifteen Variables from Hemmerle

6. Chest Breadth

These data are from a study by Hemmerle (1965) designed to illustrate a method for obtaining maximum likelihood estimates of factor loadings and communalities using an iterative computer procedure. Later the data were reanalyzed by methods developed by Jöreskog (1967) and by Horst (1968b). This data set was included because of the divergent results obtained by the several investigators. Hemmerle does not indicate the source of the data, the number of cases, nor the nature of the variables.

12. Hand breadth

11.8 Seventeen-Variable Data from Bechtold--Sample 1

These data are from a study by Bechtold (1961) designed to investigate the factor analysis stability hypothesis. The data are a portion of those originally collected by Thurstone and Thurstone (1941). The study included seventeen variables from a sample of 212 cases. The first two variables were designed to measure memory (M), the next three verbal ability (V), and successive sets of three measure word fluency (W), spatial ability (S), number ability (N), and reasoning ability (R). The seventeen variables were given designations as follows:

- First names (M)
 Word-number (M)
- 3. Sentences (V)
- 4. Vocabulary (V)
- 5. Completion (V)
- 6. First letters (W)
- 7. Four-letter words (W)
- 8. Suffixes (W)

9. Flags (S)

- 10. Figures (S)
- 11. Cards (S)
- 12. Addition (N)
- 13. Multiplication (N)
- 14. Three higher (N)
- 15. Letter series (R)
- 16. Pedigrees (R)
- 17. Letter groupings: (R)
- 11.9 Seventeen-Variable Data from Bechtold--Sample 2

These data are from the same study by Bechtold (1961) as those in Section 11.8. The variables are the same as in that data set but the cases are a separate sample of 213 cases. The two samples of cases were formed by assigning each of 425 cases alternately to one or the other of two groups after the cases were thoroughly randomized.

11.10 Nine-Variable Synthetic Data

The correlation matrix for this data set was derived from a configuration of points constructed so as to provide a severe test for the simple structure transformation procedure described in Chapter 9. A right spherical triangle was constructed on the surface of a sphere of unit radius. A point was located on each side of the triangle midway between the two vertices, or 45 degrees from each of the two vertices. Two more points were located on each side of the spherical triangle, one each midway between a vertex and the mid point, or 22.5 degrees from a vertex and the mid point. Thus the three points on the 90 degree arc of the great circle constituting a side of the triangle divided the side into four equal arcs of 22.5 degrees each. The cosines of the angular distances between all pairs of the nine points were calculated to obtain a correlation matrix. The cosines

of the angular distances of each of the nine points with each of the three vertices of the right spherical triangle were also calculated. These values are the simple structure factor loadings of the variables (points). An adequate method of analysis of the correlation matrix including simple structure transformation should recover the synthetically constructed simple structure factor loadings.

11.11 Reading Comprehension Factors

These data are from a study by Davis (1944) designed to investigate the primary factors of reading comprehension. Tests were designed to measure nine difference reading skills. The correlations are based on scores of 421 college freshman. The tests were as follows:

- 1. Knowledge of word meaning
- Ability to select the appropriate meaning for a word or phrase in the light of its particular contextual setting
- 3. Ability to follow the organization of a passage and to identify antecedents and references to it
- 4. Ability to select the main thought in a passage
- Ability to answer questions that are specifically answered in a passage
- 6. Ability to answer questions that are answered in a passage but not in words in which the question is asked
- 7. Ability to draw inferences from a passage about its contents
- 6. Ability to recognize the literary devices used in a passage and to determine its tone and mode
- Ability to determine a writer's purpose, intent, and point of view,
 i.e., to draw inferences about a writer.

11.12 The Heywood Case

These data are from a five-variable synthetic example from Thomson (1950). The correlation matrix was constructed so that every tetrad difference is exactly zero, but the g factor saturation for one of the tests is greater than unity. However, the matrix is positive definite. This example was included to test the behavior of various scaling and loss function parameters described in Chapter 8 for the Heywood case. The loadings of the variables for the g factor were chosen as follows:

- 1. 1.05
- 2. .9
- 3. .8
- 4. .7
- 5. .6

.

Marine .

CHAPTER 12

EXPERIMENTAL RESULTS

In this chapter we shall merely present the numerical results of the analyses for the twelve data sets. In Chapter 13 we shall discuss some of the more interesting of these results. At the end of this chapter the results are presented successively for each of the twelve data sets. For each data set six separate sets of analyses are presented. For the first group of three of these analyses the loss function parameter $P_W = 1$ was used and for the second group of three this parameter was $P_W = 0$. Within each group, the first set is for the scaling parameter p = 0, the second for p = .5, and the third for p = 1.0. The format for all sets of data is identical. It consists of a first line, a second line or sequence of lines, a third block of lines, and a final line. These we thall now interpret.

12.1 The First Line

The first line has three successive groups of numbers. The first group consists or six integers. The second consists of three figures. The third group has figures equal in number to the number of roots m of the correlation matrix greater than unity.

The six integers in the first group are as follows:

- (1) The first integer is simply the arbitrary serial order of the data set.
- (2) The second integer is the order of the correlation matrix or the number of variables n.
- (3) The third integer is the number of factors solved for. This is the number of roots of the correlation matrix greater than unity. It is the same as the number of figures in the last group of the first line.
- (4) The fourth integer is a code for the loss function parameter P_W . For $P_W = 1$ the integer is 1 and for $P_W = 0$ the integer is 2. Thus the integer 1 means that the loss function includes only the residual covariance elements, while the integer 2 means that it includes both the unit weighted residual variance and

covariance elements. It is possible, of course, to have PW take any value between unity and zero but only the two extremes were used for all twelve data sets.

- (5) The fifth integer is a code for the scaling function parameter p. For p = 0 the integer is 1, for p = .5 it is 2, and for p = 1.0 it is 3. Thus the integer 1 means that the scaling function is the square root reciprocal of the residual variance, the number 2 means that it is the square root residual of the total variance, and the number 3 means that it is the square root residual of the estimated or common variance. It is possible, of course, to let p take any value between zero and unity but only the three values indicated above were used for the twelve data sets.
- (6) The sixth and final integer in this group is a code to indicate the rew scaling treatment of the factor loading matrix prior to the simple structure procedures of Chapter 9. The integer 1 indicates that the factor loading matrix was normalized by rows prior to simple structure transformation; if it was not, the integer 2 is used to so indicate. The computer program provides for both options but in this study only the normalizing option was used for all sets of data. Hence for each of the six analyses for all twelve data sets, the last integer in the first group of six in the first row is always 1.

The three figures in the second group are as follows:

- (1) The first figure in this group is the ratio of the sum of squares of the first m roots of the matrix for specified scaling and loss function parameters to the sum of squares of all the roots of this matrix. This is the criterion ϕ developed in Chapter 8 which it is desired to maximize. The maximum value it can attain is unity.
- (2) The second figure in this group is the number of iterations required to reach the tolerance limits for the equality of two successive iterations for ϕ or the iteration limit, whichever is reached first.

(3) This figure is the time in minutes taken for the required number of iterations.

In the third group of m figures, m is the number of roots of the original correlation matrix greater than unity. The m figures in this group are the m largest roots of the matrix for the specified scaling and loss function parameters.

12.2 The Second Line or Sequence of Lines

The second line or sequence of lines consists of four numbers to a line. The numbers all have to do with the simple structure transformation described in Chapter 9. Since data sets 11 and 12 have only a single factor, no transformations were required, hence no lines of four numbers appear for these data sets. For data sets 1 through 9, no more than one or two lines are given. For data set 10, 20 lines of four numbers each are given. The four numbers of each line have the following interpretations:

- (1) The first number is the quantity tr (DΔ) where D and Δ are defined in Eqs. 9.21 and 9.34. This value is calculated at each iteration for the simple structure transformation matrix. When these values for two successive iterations are within the specified tolerance limit, the iterations cease. An iteration limit is also specified in the computer program beyond which iterations cease even though the tolerance limit is not yet reached.
- (2) The second number is the simple structure criterion Y given in Eq. 9.70. The maximum value this criterion can attair is unity.
- (3) The third number is the number of sets of iterations taken to calculate the simple structure factor loading matrix for a given positive integer W used to calculate F in Eq. 9.58. This integer is 1 for the first set of iterations. If the number of negative factor loadings in any column is less than the number of factors, the computations cease. If not, the integer W is increased by 1 and a second set of iterations for the simple structure factor loading matrix occurs.

This procedure continues until at least one column of the simple structure factor loading matrix has fewer negatives than the number of factors or columns in the matrix. When this occurs, the simple structure matrix from the preceding set of iterations is taken as the final simple structure factor matrix, except for W = 1, in which case the corresponding simple structure factor loading matrix is accepted. A limit is put on the number of successive sets of iterations. If this limit is reached before the number of negative values in any column of the simple structure factor loading matrix is less than the number of factors, the successive sets of iterations cease.

- (4) This number is the integer W. It indicates the number of sets of iterations calculated and is therefore the number of the line in the sequence of lines. The integer W serves as the argument for the power function in the numerator terms of the criterion function Y given by Eq. 9.70 and efined in more detail in preceding parts of Chapter 9.
 - 12.3 The Factor Loading Lines

A set of n lines, where n is the number of variables, is given for each of the data sets. The columns in this set of lines are as follows:

- (1) The first column gives simply the line numbers which indicate, of course, also the arbitrary serial numbers of the variables or tests described in Chapter 12.
- (2) The second column has a l if the variable retains its original sign and -l if its sign is reversed as discussed in Chapter 6, Section 4.
- (3) The third column gives the communalities of the variables as calculated from the factor loading matrix calculated by the methods of Chapter 8.
- (4) The fourth column gives the specificities corresponding to the communalities in the second column. The sum of corresponding elements of the two columns is therefore unity.

- (5) The next block of m columns gives the factor loading matrix for m factors calculated by the methods of Chapter 8.
- (6) The last block of m columns for data sets 1 through 10 gives the simple structure factor loading matrix calculated by the methods of Chapter 9. For data sets 11 and 12, this block of columns is omitted since only one factor loading vector was calculated for each set.

12.4 The Last Line

The last line for data sets 1 through 10 consists of m figures, where m is the number of factors solved for. Each value is the corresponding element of the Δ diagonal matrix defined in Eq. 9.34. These elements are the ratios whose average is given by Ψ in Eq. 9.70. It is the average of these ratios which is the second number in the second row or sequence of rows described in Section 12.2 This is the simple structure criterion we seek to maximize. The maximum value any one of these numbers can take is unity.

This final row of figures is not given for data sets 10 and 11, since only one factor vector was calculated for each.

-13.035	0.910 -0.019 0.050 0.762 0.163 -0.017	0.840	0.807	0.059	0.0.0			910*1	: :	0.873 -0.034 0.013	0.171	0.725	0.632	0.00	-0.035 0.	0.115 0.223 0.512			1.482			0.172	0.001 0.727 0.125	0.817	0.905	7.061	-0.016 -0.035 0.763	
								1.763 1.0											2.481 1.									
								3,456											4.037									
7	-0,131							26 0 057				0 - 0 - 476					: د		0°0 0°0						70.134 70.153			•
	0.842 -0.257 0.877 -0.233 0.844 -0.454							1,000 15.000			151	0.764 -0.263	07-0 - 10-0 07-0 - 10-7-0		0.503 -0.028		.641 0.004		0.099 10.000		7,651 0,502			-		•	0.674 0.131	
1 1.000	0.174 0. 0.156 0.			7 1 2		5:30	. 553	- ~	1.000		9.167			0 210			0.447	0,447		000-1 000-			0.24)				79.146	
~	1.836					563	3 156.6	-	41 PA'.			E. 758		A 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			<u>~</u>	1, 141 (~	1.91 4.70°E	2000	7 d	1.7.0	7.693	0.715	13.1.47	0.614	
. 153							52	3	0				•	<u>.</u>			:	376		. 346.		: -	• -		: -	_	_:	

	4	* & C	2 %	0	· (47	ı v			•				17	5.2	\$2	67		. 6	2	32					216	150	724	æ. (, c	5 5	922	151	
	36	0.918		Ċ	c		640.0-						9.017	0.0	0 · 0 ·			9 0		0.632					÷	ံ	ວ່	3.1.5 0.1.5 0.10		٠	Ö	3	
	700	1 1	0.143										-0.034	-0.021	621.0	2.0 2.0 0.0	0.00	150.0	-0.044	0.237						•			C 42		440.0-		
1317.103		0.036	100.0-	4 C C	200.0	200.0	0.013	0.434	0.00		1.331			0.854	9.833	200.0-	+ / O • O •	0.036	800.0-	0.110			1.688		0.867	0.853	9.434	-0.003	+70.0- 20.0		510°C-	0.104	
1919, 482											2.050												2.562										
2731.512											4.74.3												4.750										
0.051		- 3, 506 - C, 6 31	-0.493	0.034	0.004	-()=04+)	0.244	0.508	0 . 106		££0*0		-0,351	-3,123	-0.407	-0.367	-0.13)	-0.193	0.587	0.571	Je 354		0.333		4 6 36	7.69.6	0.473	0.347	0.144	0-150	- 1. 534	1,44	
1.000 16.600			•			•			0.013		4.090		- 159-0-			C. 1,69 -			-0.041	-0.164	3.032		٨. 000		0		2	-075	-0. 775			0,256	į
1.000	2	0.616 -	0.620 -								3.46.3	00	0. 714	733						ς.	2,715		595°i	360°	***	~ 4.0° C	7. 7.				C 4'4 "	₹ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	•
-	.00.1 200	5. 111	0. 171	0.578	100.00	0.493	0.55%	100.0	C+ 613	135.0	- ~	noc 1 30	121		0.150	0.760	0.194	0.215	9.23.9	9.209	1.153	£35*0	-	- ~	•	1			0.206	٠, ١٢٥	5.96.5	٠ • •	• • • •
• 1	31 LSC	0.639	0.677	3.422	563.0	012.0	1,40	0.997	3,170	3.454	۴.	. 16.1 15.0	6			0.714	0. PUT	0.785	0.762	0.731	0.643	u. 15.1	^	0.964 20.001		7		7.744	10. 104	0.741	1.167	. 175	
σ	7).							: _:	:	366	c	46 D.	-	• -		: .:		-	-	-	<u>.</u>	672	c			•	• -		, 4 		<u>.</u>	-* .	<u>:</u>
-	1.35	^	. ~	. 1		4	٠, ٢	•	ی	ξ.	-	1.04	•	- 1	u #	•	d	•	٢	۵	+	'n	~	1.037		:	` ^	٠.	• •		•	A (L

1 1,930 1,309		n.237 0.536 0.053	0.035 0.389 0.010	0.156 0.453 0.031 -	0.081 0.452 -0.054	0.276 0.014 0.119	0.340 -0.015 0.131 -	0.291 0.014 -0.077	0.225 0.700 -0.024	0.241 0.037 0.081	0.059 -0.093 0.003	0.434 -0.045 0.344	0.124 0.199 -0.051	0.584 0.725 -0.021	0.131 -0.002 0.506 -	0.057 0.027 0.103 0.435 0.053	0.074 0.359 0.445	3.073 0.07C 0.47!	-0.003 0.309 0.323	3.084 0.199 0.271	-0.071 0.410 0.115	0.030 0.370 0.055	0.030 0.359 0.113	3.003 0.484 0.027	0.037 0.145 0.121
3.101													•				•		•						
5.46																									
19.172																4 -0-120									
0.167																-3.104 -0.364									110 - 01138
53.000																0.027 - 0.									
(°° °°)	020	0.561	n. 345	7.177	0.442	3.724	2.17.0	0. 722	0.689	0.726	0.512	0.571	0.677	3.529	7.404	3, 3,4	7,70	C. 4.7	17.0	7.417	1.5.07	27.74	0.500	C. 5+4	9.654
-	· (4.1)															0.714									3.473
<u>-</u>	090°1 0.50° 69°6 766	0.549	0.229	7.341	184.0	J.664	3.712	441.0	* L *	7.734	7.744	30.00	0.550	0.75.7	9.755	7.201	1.44.	9. 7.99	3000	1.734	0.470	1.4.17	114.7	4.4.0	7., 54
7.2	٥ ع و د	-		_		-	-	_:	-	_		_	-		-:	-•	-	-	_:	-		_:	_	_	-

3.577 0.170 C.414 0.646 0.691

nith Set 2 (cont.)

**	•	•	^	-	C.547 24.000 0.141	7.657	1.714	1.222	0.947	0.449	Ē.	
1.456	÷.	13,534 63,100	100	1.390	c							
-		3 24 50		144	7F1 0 960 6 655	0.704 -0.392		0.334			0.345	
÷.		2.2 49		777	-0.0145			921.0		0.113	-0.023	
	•	13.764			9,420 -6,125 -3,163	•		0.245			0.057	
- 4	•	3.367		15:	-0.112	0.17		0.437			-0.055	
	•	1.614		1.142	7.697 -0.241 7.274	13.046		204	0.634	0.037	-0.303	
•		1.7.1		41.	-0.401 0.212	- 30 36.5		0.232		0.378	0.121	
	•	11.727		111	-0.407 1,107			401.0		0.013	-0.073	
		7.417		1.14	-0.104 0.001	P01.0		0.319		0.165	-0.003	
,	•	0.740		767	-0.444 3.235	-0.005		0.350		-0.037	0.061	
- 1		741		<u>:1:</u>	0.543 0.474	3.194		0.159		-0.078	-0.013	
-		1.50.7		7	0.175 C.147	U40*0-		-0.056		7.2EB	0.323	
1.1		1.510		.7.3	12.491 3.127	166.0		0.174		0.295	-0.025	
		1.74%		. 34	0.16h -0. 14	3. 46.7		-0.020		0.662	-0.)62	
		1 45		مي س د	0.041 5.002	-2.421		0.045		0.040	0.513	
-		1.534		×.	0.047 - 5.073	-0. 16 A		0.137		0.013	0.442	
-		1.45)		145	0. 076 -0. 14-	T.10.0 - 1 15 -11-		0.246		3.742	0.434	
. 7	•				6.146 0.601	-0.395		0.139			10000	
-		6.3.		9 .	9.131 - 7.167	1-11-0-		0.204			7.313	
		1.7 4.1		1.4	0.341 -0.101			0.190			0.253	
:		1.47			141-0-141-0-	P40*U-		0.541			C60.0	0.032
:					0.210 -0.041	0.170		0.432			0.015	0.374
N.		7.41.5		3.545	-0.11: -2.117			0.463			0.074	0.067
	•	* **		Ş	-0.072	3.000		0.545	0.171		0.014	0.143
*		1.117	```		n.167	710°u-		0.375		-0.015	0.052	0.438

0.53 0.444 0.520 0.445 0.449

DATA SET ? (cont.)

		0.172	- - - -	,313	1117	, 024	.068	.053	0.176	. 277	,002	. 15 .	.026	.150	.097	.035	.126	+04	305	.550	.017	.062	.214	120	. 222	
- .		0.041	0.0	40.0	0.01	0.06	0.12	.0.0	0.01	0.39	3.02	0.20	00.00	.0.01	0.50	0.57	0.46	0.36	0.25	40.0	0.26	0.10	0.07	0.10	0.067	
1.073									0.471																266	
																									ċ	
2.115		0.127	0.041	-0.095	0.032	0.137	-0.021	0.072	0.132	-0.034	0.793	0.484	0.666	0.485	-0.004	0.009	-0.040	0.122	0.259	0.040	0.013	0.366	990.0	0.133	0.400	
		0.617																					3.324		144	
2.373		0	ċ	·	•	ċ	•	•	ċ	0	• o -	•0	ċ	· •	°.	•	ċ	•0-	ວ	·	•	•	• •	•0	ċ	
\$*005												,														
7.43		F(,0.0-	3.160	3.232	0.012	-0.042	0.015	2.0.0	0.043	1.00.0	1.083	2.015	2000	3.025	0.109). 1FK	0.1.0	3,107	0.097	0.450	20100	-0.104	1.0.0	290.0	0.048	
-		_	_						-0.000										0.102						-11.17	
0,00		-				٠			- 0.174 -													6.150			-	
000		120	**	346																		172	**1	+ + 1	-	
		-0.123		.0-	0-	.0	-0-	ç.	-0	3	•	ċ	ċ	ö	¢	ė	ċ	6	ċ	¢	ç	ċ	-0	-0-	ţ	
	۶	7.4.21	E. 10	7.446	0.402	7.444	0.55	ろんじゅつ	7.455	3.60	0.454	0.5	0.470	0.401	11.4.	F. 3 S.A.	1.965		2.45	1.067	2.626	0.410	0.507	7.64	1,44.	,
-	1.070	•	<u>-</u>		40	*61	~	*	7	44	*	413	**	\$	-	**	F 1 9	£ ^;	74	**	5	4.5	3	-44	<u>c</u>	
•	, גרם	0	c	0		ċ	•	ď	c.	c	ċ				7.	,	-		3		,	0.15.4	404.404	0	G.	
-	ויארן המיגעם	1.524	3.270	3.343	3. 134	7. 4.39	1.461	7, 734	0.810	1.747	76-	3.4A2	0.447	7.4.34	7.4.6	9. 14.	18400	3.4.72	3.4.25	1.433	0.44.0	. 44	1. 134	01.0	1:4:1	
-	, ,	•		•		•			•	•	•		•							-	•		•	•		
	3.916		_	-	_	_		-	-	-		_	_	-	•	_	_	-			_				_	1

3,400 28,000 3,641 4243,234 1746,465 1175,011 1212,325

966.5

0.013 0.214 0.014 0.029 0.434 0.003 0.223 0.041 0.029 0.434	0.287 -0.011 0.029 0. 0.223 -0.041 0.147 0.	0.723 -0.341 0.147 0.	C . C . C . C . C . C	0.015 0.719 0.495 0.	-0.005 0.310 0.572 0.	0.015 0.1FB 0.919 -0.	0.124 0.136 0.433 0.	-0.004 0.23e 0.524 U.	0.051 -0.004 0.044 0.	0.123 0.775 -0.005 -0.	3.244 0.173 - 1.123 0.	0.855 -0.007 0.05) 0.	-0.001 0.284 0.087 0.	-0.021 0.171 0.023 0.	0.113 0.190 -0.052 0.	-0.04) 0.744 0.064 0.	0.123 0.127 -0.064 0.	0.093 0.159 0.051 0.	0.025 9.134 0.241 U.	0.141 J.177 0.074 J.	0.017 0.00 cc0.	U.169 0.735 0.131 0.	0.037 0.153 0.233 0.
č €	0.0	5.0-	0.0	. C	0.0-	Ŏ•C	3.1	C.O.	£.0	0.0-	**0	3.2	C*0-	č o	0.6-	1.0		0.0	0.0	Z.0	0.0	1.°C	6 • 0
0.476		3.430	3.4.14	0.740	0.233	.01.0	00,30	3. 121	0000	10,13	L	300 31	1,240	3. 14.	1,521	5.122	3.415	×11.	****		77.50		:•326
-0.365													1.175								11.11		s
- 3.06% -																					- 52.15.3		-3.1.6
-4.1.3-	-0.10-	-9. 36.		-0.120	-9.224	-0	64.31		1,000	000	9,16,7	-0.41)	15. 15.3	×	-13.147	. 171	4,321	1, 0.0-	-0.175	A. 1114	-0.159	+42:01	11.144
7.7	***	7.1.0	24.00	1.571	0.44	C. 5 % P.	13.94.7	1000	7. 76.	F 24 . 5	2	404	0.1.1	1.739	. 1 . 36 .	3. 1. 1	3.413.	2. 1. 2. C	1. 174	667.4	3. 170	16.00	1.4.1
10.5.00	7. Jes	41.5 1.3	2.64.	.) 6.	7. 144	1.031		40.00	150.3	11-11-11	7.5.47	11	1, 11,	16.0.1	100.0	34.7		١٠،٠	7.	1	11	1. 1.4.4	1 . 4 . 1 .
#		3.179	1). 113	7. 4.14	3.4.16	1 2.47	414	1	3, 200	1.7.73	4 4 7 5		686.4	1.131	1.1.1	1.711	***		11. 8.34	1.431	3.45.2	2. 4. 2	1.4.17
•	-	-	-	· -:	•	-		· <u>-</u>	-	•	· -	•			-	•		•	-	-	•		:
		_	~	•		þ.	•	7.	-	-	. ج. نحد		4	£	÷		:	·.	Ş	-	:	:	:

0.013 1.543 0.900 C.024 0.414

DATA DET ? (cont.)

0.500 1.500	0.004 0.139 0.680 0.054 0.036 0.005 -0.137 0.685 0.129 -0.036 0.006 -0.137 0.498 -0.066 0.530 0.172 0.014 0.589 -0.057 -0.038 0.774 0.026 0.777 -0.037 0.025 0.787 -0.046 0.197 -0.035 0.026 0.157 0.167 0.307 -0.035 0.025 0.157 0.167 0.267 0.105 0.107 0.157 0.261 0.265 0.026 -0.017 0.157 0.261 0.265 0.026 0.107 0.075 0.561 0.475 -0.031 0.017 0.066 -0.001 0.147 0.25 0.026 0.072 0.016 0.027 0.028 0.107 0.066 -0.001 0.147 0.120 0.167 0.066 -0.001 0.147 0.120 0.067 0.068 0.571 0.238 0.069 0.108 0.018 0.018 0.060 0.108 0.018 0.119 0.170 0.172 0.540 0.119 0.105 0.170 0.172 0.540 0.119 0.105
2.098	

E. C. C. D.	
070°7 (25°t	0.444 0.
The state of the s	
0.00 e	
*	

3.730 0.654 0.434 0.629 0.468

DATA SET 2 (cont.)

^	4	r,	~	-	0.923 10	0000	23 10,000 0,033	_	13.612	3.316	2.534	2.754	1.784	.	
0.743		0.597 60.009 1.000	50.00		001										
-	-	75.0		PO4.	C	142	0-034 -0.	\$10	0.000			0.149	0.067	0.672	
. ^	: -	7,6		644	~				0.427			0.055	0.215	0.687	
. ~		2,55		***	0.453 -0.			-0-375	0,303			-0.146	-0.045	0.527	
4	-	0.40		. 503	-				0.033			0.005	-0.057	0.532	
U	-	9.652		0.308		-0.217	0.098 J.		-0.105		9.724	0.134	0.070	0.315	-0.057
•	_	0.70		356.	.0				0.027			-0.024	0.129	0.403	
^	•	0.74		. 253	0				0.015			0.060	-0.032	0.298	
œ	-	0.53		407					0.106			0.131	-0.033	0.375	
Q	-	0.75		747	0				0.007			-0.036	0.097	0.293	
2	-	0.72		.277	~				0.080			0.786	0.009	-0.013	
	-	0.58		.417					0.031			0.587	0,219	0.073	
,5	-	0.64		. 356					660.0			0.753	-0.022	0.222	
£	-	0.54		÷404					0.018			0.574	-0.085	0.433	
7.	-	0.51		.426	7				0.167			-0.027	0.659	-0.007	
٠.		0.57		425	•				962.0			-0.009	0.720	0.087	
16	.	0.58		414.				-0.293 -	0.161			-0.039	0.573	0.409	
17	_	0.63		76L.	•				0.301			0.139	0.191	-0.102	
a ,	-	3,54		1651	•				0.142			0.328	0.106	0.224	
5-	-	0.10		.393	Α.				195.0			0.109	0.045	0.059	
32	-	0.55		655.					0.251			-0.010	0.335	0.525	
7.1	1.	0.540		. 460					0.192			0.465	0.128	0.489	
22	-	0.48		0.512	~	161		-0.002	0.166			0.039	0.064	0.414	
۴ر	-	0.55		2445	•	171			6.063			0.145	0.135	0.569	0.130
7,4	-	0.567		. 433	•	052	0.154 0.		0.030			0.473	0.061	0.193	0.225
°	0.633	0.546		0.576 (0.544										

	00000000000000000000000000000000000000	, ,
1.102		,
₹,401	0.000000000000000000000000000000000000	; ;
4.463))
6.413	20000000000000000000000000000000000000	•
19.459	0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	•
36.484	00030000000000000000000000000000000000	,
	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	
0.150	0.00	•
0° 194 20° 036	0.044 0.	,
	0.000000000000000000000000000000000000	:
1 1 13 1.000 19 7.990	0.000000000000000000000000000000000000	
1 1 36 60,000 19 53,001		
33 6 2 3.536 6 3.509		•
3 3 3,752 3,756	アンス かいしょく しょえ りょく しょより コウモ くまり いちょう ちゅうくきん ちょく くっぴ しょご ぐままま しょまま しょう こく しょう コウモ しょままし	:

0.514 0.552 0.516 0.528 0.344 0.521

	00000000000000000000000000000000000000	J
	• • • • • • • • • • • • • • • • • • • •	,
0.342		•
	00000000000000000000000000000000000000	•
1.255	0.000000000000000000000000000000000000	:
1.533	00000000000000000000000000000000000000	
<u>:</u>		
2.777	0.000000000000000000000000000000000000	;
86		
4.498	0.032 0.032 0.032 0.032 0.032 0.032 0.033	
7.932	00000000000000000000000000000000000000	•
	0.00 0.00	
0.133	0.000000000000000000000000000000000000	_
000 • 91	10000000000000000000000000000000000000	
0.698 16.000		
1 1.000		
3 000	00000000000000000000000000000000000000	•
6 1 2 0*620 54*000	00000000000000000000000000000000000000	
~		•
3.976.	m n n a u n u c c c c c c c c c c c c c c c c c	

0.715 5.759 6.538 0.592 0.593 0.533

		-0.101 0.027 -0.027 0.063	0.029 0.097 0.094 0.118	-0.032 -0.008 0.049	0.007	0.054	0.129 0.129 0.129 0.274 0.157 0.153
: SS • 1						0.016 0.016 0.003 0.114 -	0.045 0.039 0.418 0.527 0.349 0.677
_		0.002 0.001 0.061 0.024	0.023 0.001 0.039	0.053 0.059 0.059	0.021	0.533 0.533 0.533 0.239 0.373	0.050 0.013 0.023 0.035 0.035 0.110
2.181		0.238 0.042 0.028 0.061	0.013 0.203 0.240 0.253	0.038	0.060 0.060 0.096 0.054	0.058 0.136 0.136 0.558	0.569 0.654 0.010 0.037 0.096 0.130
2.P8U		0.053 -0.004 -0.032 -0.012	0.041 0.081 0.002 0.004 0.538	0.705 - 0.786 - 0.786 -	0.825 0.812 0.060 0.112		0.359 0.009 -0.080 -1.015 0.580 0.158
4.679			0.761 0.770 0.822 0.763 0.033	-0.012 -0.042 -0.005	0.020 -0.057 -0.069 0.069	0.070 0.050 0.075 0.102 -0.047	0.133 -0.033 0.526 0.112 -0.045 -0.107
12.471		0.159 -0.322 0.015 -0.032	-0.035 -0.103 -0.102 -0.124 -0.195	0.094 0.049 0.021	-0.003 -0.006 0.006 0.052	0.004 -0.004 -0.006 -0.038 0.0089 0.017	-0.126 -0.116 0.006 0.048 -0.048 0.189 0.155
15.718				-0.003 0.005 0.020 0.067			0.183 0.091 0.091 -0.372 -0.287 -0.513
		-0.1 ×2 -0.027 -0.055 -0.066	-0.081 -0.197 -0.227 -0.193	-0.134 -0.183 -0.122	0.370	0.3373 0.344 0.281 0.305 -0.074 0.054	
0.043		0.074 - 3.455 - 3.432 - 0.446			-0-172 -0-111 0-098 -0-007		
0.997 10.039		, ~ ~ ~		0.541 0.625 0.623 0.53	0.637	0.016 0.016 0.035 0.045 -0.255 -0.257 -0.716	6, 0 -0 -0, 0 -0, 3, 3 -0, 0 -0, 0 -0 -0, 0 -0, 0 -0 -0, 0 -0 -0, 0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0
	င္ င	2046 2004 2005 7 7		0.525 0.525 0.561	0.542 0.576 0.681 0.628		0.389 0.561 0.561 0.653 0.623 0.627
	00 1.000 00 2.000	0.778 0.235 0.759 0.771	0.275 0.319 0.153 0.736 0.522	0.357 0.267 0.266	0.222 0.351 0.479	0.341 0.341 0.416 0.45 0.43 0.431	0.563 0.512 0.369 0.330 0.226 0.444
	.763 44.000 .483 45.000	0.272 0.765 0.641 0.673			0.178 0.178 0.639 0.521		0.437 0.649 0.641 0.670 0.774
~	00						
ď	3.957 7.539	C- F 4	ψ. ψ► α σ	2121	4 5 4 F 8	25 45 45 65 65 65 65 65 65 65 65 65 65 65 65 65	25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

3.843 0.831 0.769 0.833 0.706 0.626

1 96 . 9 24.199 3707,592 1959,451 1613,779 605,969 1.000 13.000 0.117

0.718 0.646 57,(C) 1.000

-0.030	0.017								0.078	0.030	0.082	0.021	0.000	0.075	0.674	0.540	0.550	0.670	0.655	0.588	0.597	0.381	0.341	0.024	-0.029	0.346	0.017	-0.028	0.008	0.041	9.179	3.094
0.048	0.021	0.020	0.020	.0.029	0.044	0.025	0.037	0.523	0.712	0.792	0.779	0.813	0.871	0.844	0.007	0.086	0.074	0.038	0.061	0.093	0.023	.0.022	0.116	0.077	0.294						1:37	0.017
0.130	''	504	513	211	0.392	0.454 -	0.704 -	0.025	0.011	0.001	0.044	690.0	0.049	0.060	0.034	-0.026	0.007	C•050	0.100	0.071		•			0.172				$\overline{}$	0.023	0.004	C
0.195	1																				0.163					∂ ,356			9.314	0	1	_
0.103																											0.280	668.0	0.382	855	209	- 1113 -
					.421		0.310 -	9.047 -	0.061		0.015	0.005	0.026			0,323									0.011				0.120			
_	•	•	_	_	•	-	•	•	-	•	-	ĩ	7	ĩ	•	•	-	_	•	-	-	-		ĩ	-	ī	•	-	•	~	•	ī
33	11	ç	7.	11	13	C	00	36	2	12	11	5.3	32	(1	11	20.0	75	95	75	33	21		**	٦,	اغ	رع	5 1	9.	2	10	91	10
-0.06	-0.001	0.01	0.007	-0.00	-7.003	-0.920	00.0-	0.03	-0.07	-0.13	-0.081	-0.15	-0.19	-0-11	0.631	0.468	0.475	0.595	0.575	0.503	0.517	-0.0-	0.23	-0.07	-0-11	9.015	0.014	-0.046	-0-11	-0.001	0.116	0.03
	~		-							0.772			0.855	0.860	0.27×	0.2AC	0.287	0.313	0.339		0.274			9.785			-0.112	490.0-		-0.006	.104	0.013
					0.114			0.039	.0.063	0.042	960.0	N.C.D.R	0.012	3.00R	-0.145	190.0-	-0.072	-C.341	100.0-	-0.014	-0.336					•		-0.008 -		0.324	0.022	9.146
	0.132	0.069	0.147													-0.147 -							C.445	3.207	0.163	0,310	- 951°C	0.124 -	128.0-	0.444	-0.218	0.073
	,	•	ı	•	0.262 -	305.0	0.337	- 970.0	0.125 -	0.133 -	0.100 -	- 951.0	0.122 -	0.154 -	0.115 -	0.157 -	0.184 -	0.102 -	0.156	0.169 -	9.135	964.0	545.0	0.187	0.143	9.792	- 100.0	0.307 -	0.344 -	- 174.0	0.617 -	
																															967.0	
																														301	_	
																												0.724		c.	0	÷
9.171	0.963	444	9778	0.676	0.625	9.774	0.999	3.415	090.0	0.740	C. 743	3. 734	7.867	0.856	0.726	0.551	3.559	9-634	0.729	1.630	3.436	0,040	415.514	1.175	AFC • O	0.222	7.46.7	3.275	0.110	0.40	9,731	0,031
-	-:	_	-		•	-	-:	•	-	-	-	<u>:</u>	<u>.</u>	-	-	:	-		_:	-	-	-			<u>:</u>	:	-	•	-	-	·•	1.
	r	~	7	سي	ې	~	æ	,	0	_	~	6	4	5	4	~	۵	c	c	_	۲.	.45	٠	Ľ	ψ,	_	1	c	_	_	ĸ.	_

3.547 3.509 6.612 6.549 9.43H 0.659

	00.000	
1.024	60000000000000000000000000000000000000	•
7 7	00000000000000000000000000000000000000	
1.657		•
1.582		0.105
3.145	0.00	-0.064
4.774	60000000000000000000000000000000000000	0.119
12,765		3,456
_	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.055
0.050	C. C	0.433
0.0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	-0.117
0.ekm 110 00	4	0.613
1 1 COO	00000000000000000000000000000000000000	0.701
5 7 2).547 67,303 0.537 26.(03		
~		•
3 3 1.740 7.637	すべい ごよっちゅう によい 内 は マネコマミンをいわ ちょう マットブミー そんじょく にっとい としま はま はまままます	Ç. 2

3.494 J. 566 G.439 G.531 0.534 3.487

DATE SET 3 (cont.)

	00000000000000000000000000000000000000
1.596	0.000000000000000000000000000000000000
	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
7.449	0.000000000000000000000000000000000000
3,005	0.0013 0.0013 0.0013 0.005 0.0
4.0A9	0.000000000000000000000000000000000000
6,449	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14.718	
	00000000000000000000000000000000000000
3.10 0	0.000000000000000000000000000000000000
6.c63 10.393	0.000000000000000000000000000000000000
* 1 01 1.600	
) () ()	
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

1.511 Carri Carro Casto assus 0.434

	932 -0	0.69.0.691.	517 0.025 0.	.667 0.563 0.	.001 0.693 0.	.741 -0.008 0.	269 0.119 0.	.816 0.324 0.	0.517 0.724 -0.		425 0.031 0.	.040 0.597 -0.	.008 0.682 0.	.411 0.049 0.	.606 0.595 -0.	016 0.659 0.	437 0.472 0.	0.006
	1.698 -0.164	20 20	0- 64	.0 649	.75 -0.	8	7 - 2	55 0.	, c		9	24 0.	.0- 99	348 -0.	197 0.	52 -0-	37 -0.	30 - 00
000	0.675 0.0	400	331	.930	. 975	. 824	- 802	968		. 06.7	800	716.	. 87e	4745	. 8c.	. 868	980	•
.000	C (ċ		9	ó	ċ	ċ.	o o	; ;	; <	ó	o	*	ó	ċ	ó		ċ
0.644 00	0.949	ė	ö	ö	ö	10000	ö	ċ	.	; c	0.948	Ö	Ġ		ó	ន់ (ំ
56 9	-		•	_		-	, می	-				-		-	. دسته			-

	•													
	•	ŏ	116	50.0	200	9.64	ċ	4	_			-0.016	•	0.023
	.	o (3	0	25	0.75	ł	-0-	_			0.069	9	0.902
		o (919	0.0	\$:	0. 754	o ·	ċ				00.00	9	0.042
	-	Š¢		3 6			-0-0	3.0				-0.00	0.582	0.629
	-	5	8		2 2			•	_			*00.0	•	
		á	-	9	0		•					779.0	, r	0.00
	-	ċ	959	Ü	42	2	0	0				840.0	• (*	0, 786
		o	996	0	: 2	0.874	d					20.0		
	_	0	600	0	7	0.954	0	6				0.757		-0-026
	-	Ċ	Ş	0	1	0.964	6	0				0.448	י י	0. 716
	_	ċ	910	0	*	0.97%	-0.	0	_			0.745	0.0	0.405
	_	ċ	667	c.	1	0.854	-0.	-0.4				-0.022		0. 700
	_	÷	484	0.0	12	o. # 7	0.4	3				0.643	ŝ	-0.019
	-	ö	254	0.0	8	c. 403	-C.2	6.3	_			0.613	0	0.577
	-	ċ	£ 7	0.0	42	0.450	-0.1	10.				-0.005	4	0.692
	-	ö	016	0.0	દ્વ	0.840	•	•				0.643	Š	-0.011
ec.	_	ċ	957	Ó	5	0.893	-0-	2.6	_			0.587	0	0.581
	_	ö	910	0	27	•	9	-0.02	_			44.0	•	0.465
		ડં	200	ć.	į		-0.081	1 0.036	_			9.464	•	0.510
~	144.	0.4	5	0.65	ě									
	23	•	^	-		1.000	0 15.000	0.000		4066.633	552,83	219.863		
0 E	25	9.649	37.	000	1.000	6.0								
) 1										
	• .	o e	100	0.33	<u>.</u>		0.302	0.384				0.937	000.0	0.00
	<u>.</u>	- (7 (= :		0.21	ġ,				0.018	9	0.882
	• -	= (, (•		8	1.0.0-	j				0.039		0.066
	:.	•			= ;	Ě		ġ (0.597	9	0. 435
	•	• (7 6	•	5 2	Š		j (965.0	•	0.002
	-			•	s :		*14.0-	ģ				-0.023	9	0.580
	•	: (- :		200	5				0.192	•	0.390
	•	.		•			0.00	ġ (0.351	•	0.771
	• .	j (5	P		-0.30	•				0.769	166.	-0.004
	.	ė	186	0	* (ş	-0.491	ċ				0.416	. 761	ó
	<u>:</u> .	ċ	-	0	~ :		-0-134	ģ				-0.022	4	0.719
	• .	c	411	0	ς.		-0.404	ė.				-0.010	٦.	0.415
	-	÷.	\$ 16	Ĉ.	•		27.0	.c. 76				0.493	•	0.685
		o i	7	3	<u>€</u> :	7	-0.145					0.555	•	-0.021
	•		5	C		-	-0.104	.0.47				-0.013	Š	0.588
	-	ċ	T 0 E	- -	72	į.	0.34.4	ģ				0.475	0	0.669
	<u>:</u>	ċ	5	ç. 0	-	5	-0.12	0.08				0.523	•	0.008
	-	ċ	0	0.0	ş	Ç	-0.287	.0.61				-0.005	Š	0.587
	:	c	-	c	÷		-0.07	6.1.0				0.423	•	•
	•						2						•	•

DAZA SET 5

		0.780 0.095 0.865 -0.022 0.934 -0.017 0.782 0.062 0.023 0.854 0.019 0.714 -0.035 0.706	0.791 0.072 0.854 -0.010 0.827 -0.055 0.789 0.045 0.029 0.837 0.015 0.714 -0.038 0.704	0.793 0.065 0.851 -0.005 0.826 -0.027 0.789 0.047 0.030 0.831 0.014 0.713 -0.038 0.702
4.008			1.510	2.063
27,433			•	& & & & & & & & & & & & & & & & & & &
0.050			0.033	0500
0.444 71.000		0 0 236 6 0 359 6 0 359 7 0 0 267 7 0 0 539 7 0 0 555	0.444 14.000 .454 0.324 .454 0.411 .756 0.403 .750 -0.571 .559 -0.510 .671 -0.510	9.000 -0.4% -0.4% -0.4% -0.4% -0.4% -0.4%
9	000.1	000000000000000000000000000000000000000	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000 0.413 0.453 0.453 0.453 0.453
uni uni		99999999		20.100 20.100 20.100 20.100 20.100 20.100 20.100
~	0.494 13.000	00.00 00	* 000000000000000000000000000000000000	0.4% 0.0000 0.4% 0
•	11111	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		

DATA SET 5 (cont.)

	0.127 0.714 -0.047 0.921 0.011 0.791 0.096 0.709 0.908 -0.015 0.674 0.031 0.662 -0.009 0.491 0.183	0.834 0.063 0.876 -0.001 0.871 -0.030 0.078 0.038 0.018 0.785 -0.055 0.809	0.836 0.063 0.873 0.002 0.841 0.030 0.084 0.035 0.021 0.779 -0.057 0.800
1256.756		1.771	2.230
2746.550		4.673	5.770
0.050		0.033	0.033
1.000 11.600	0.374 0.600 0.497 0.384 -0.384 -0.387	0.373 0.442 0.442 0.442 0.396 0.396 0.396 0.580 0.580	0.000 0.450 0.520 0.524 0.524 0.524
1.00	0.178 0.178 0.178 0.178 0.078 0.078 0.078	000. 000. 000. 000. 000. 000. 000. 000	0.67 0.821 0.806 0.753 0.753 0.715 0.717
1 1 2	0.035 0.031 0.031 0.031 0.44 0.44 0.44 0.44 0.44	00.00 00.00 00.000 00.000 00.130 00.130 00.200 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.000 00.0	3 1 000 1.000 0.123 0.124 0.126 0.284 0.284
. 070	0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.017 0.001 0.001 0.001 0.017 0.017
1.115		6	

data set 6

935 0.065 343 0.055 343 0.055 489 0.51 1289 0.36 1289 0.36 1289 0.36 1289 0.36 1389 0.30 1389 0.10 1489 0.55 1580 0.10 1689 0.63 1689 0.63 1689 0.63 1689 0.63 1689 0.63 1689 1699 0.63 1699 0

DATA SET 6 (cont.)

0.975 11.000	1 0.975
00	.000 1.000
734 -0.160	0.734 -0.160
519	0.519 -0.107
522 0.146	0.522 0.146
0.640 0.330	640 0.330
793 -0.075	0.793 -0.075
652 0.221	0.652 0.221
371 0.289	0.371 0.289
412 -0.344	0.412 -0.344
208 -0.481	0.208 -0.481
183 -0.562	0.183 -0.562
784 -0.135	0.784 -0.135
554	0.554 0.150
	987
1.000 9.000	o•
00	0 1.000
-0-	0.173 -0.
0.526 -0.316	0.526 -0.
ċ	0.423 0.
o	0.572 0.
-0	0.768 -0.
ċ	0.632 0.
0.252 0.266 0.056	0.252 0.266
0.087	0.318 0.087
0.071	0.061 0.071
0	0.043 -0.
0-	0.754 -0.
	ံ
	650

DATA SET 6 (cont.)

		-0.034 -6.060 0.583 0.075 0.733 -0.011 0.161 0.052 0.749 0.126 0.732 -0.018 0.335 0.658 0.111 0.769 0.071 0.752 0.124 0.091	0.021 -0.034 0.061 -0.023 0.087 0.525 -0.067 0.707 0.127 0.726 -0.015 0.726 0.673 0.328 0.743 0.084
1.533		0.411 -0. 0.732 -0. 0.703 -0. 0.828 0. 0.087 0. 0.067 0. 0.067 0. 0.049 0. 0.049 0.	2.532 0.895 0.740 0.740 0.740 0.914 0.172 0.172 0.0172 0.0173 0.0173
1.668			7.764
4.284			6 • 703
6.043		-0.789 0.084 0.084 0.030 -0.182 0.172 0.696 0.708 0.542 0.148	0.033 -0.627 -0.527 -0.254 -0.352 0.352 0.351 0.461 0.409 0.239
4.000		0.347 0.347 0.347 0.503 0.503 0.636 0.636 0.224 0.224 0.224	0.000 0.107 0.197 0.199 0.115 0.611 0.611
C.891	00	0.557 0.557 0.557 0.957 0.957 0.957 0.954 0.174 0.174 0.920	0.866 0.866 0.657 0.657 0.657 0.661 0.661 0.641 0.641
1 4	000 1.000	0.142 0.563 0.363 0.363 0.361 0.456 0.456 0.359 0.358	3 1 -000 1.000 0.173 0.7472 0.7374 0.7374 0.436 0.436 0.436
3 2	0.474 13.000	0.854 0.645 0.645 0.763 0.763 0.750 0.750 0.773 0.773	2. 36.9 2. 36.9 2. 6.7 2. 6.7 2. 6.7 3. 6.7 3. 6.7 4. 6.7 5. 7 6. 6.7 6. 7 6.
13			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
•	3.952	100 4 8 5 4 8 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2,938 2,298 1,301	0.714 0.067 0.092 0.026 -0.023 0.102 0.024 0.112 0.703 0.005 -0.035 -0.054 0.040 0.113 0.524 0.066 -0.005 0.370 0.496 0.141 0.195 0.077 0.507 0.053 0.042 0.170 -0.047 0.283 0.452 -0.010 -0.038 0.131 0.155 0.040 0.023 0.005 0.058 0.112 0.064 0.106 -0.049 0.241 0.834 -0.031 0.002 0.339 0.044 0.174 0.147 -0.038 -0.045 0.133 -0.030 0.405 -0.083 0.066 0.320 -0.016 -0.049 0.399 -0.007 0.792 0.346 -0.017 -0.080	0.911 0.779 0.613 0.677 -0.071 0.054 0.257 -0.038 0.241 0.074 0.187 -0.022 -0.053 0.290 0.256 0.480 -0.011 0.230 0.661 0.374 0.075 0.012 -0.053 0.590 0.019 0.035 0.172 0.047 0.330 0.001 0.390 -0.012 0.047 0.035 0.027 -0.064 0.124 0.138 0.035 0.027 -0.005 0.016 0.138 0.381 -0.109 0.118 0.194 0.159 0.011 -0.053 0.402 0.215 -0.059 0.015 0.314 -0.041 0.370 -0.015 -0.035 0.147 0.424 0.532 0.164 0.430 0.131 0.017 0.573 -0.020
4.25R		
10.368	0.325 0.116 -0.440 0.376 -0.373 0.044 -0.373 -0.077 0.284 0.059 -0.222 -0.030 -0.012 0.399 -0.053 0.007 -0.051 0.399 -0.051 0.399	3.398 -0.069 -0.057 0.114 -0.170 0.138 -0.305 0.227 -0.026 0.263 -0.237 0.030 -0.023 0.051 0.006 -0.051 0.006 -0.101 0.121 -0.134 -0.124 -0.347 -0.123
000 0.167	0.041 -0.156 -0.325 -0.337 -0.279 -0.279 -0.279 -0.379 -0.379 -0.379 -0.379 -0.379 -0.379 -0.379	0.000 0.300 0.300 0.300 0.301 0.200 0.157 0.1210 0.0110 0.030
C. 993 92.00	819 0.152 557 0.414 274 -0.241 477 -0.27 751 0.029 542 0.190 274 -0.530 123 -0.53 437 -0.623 437 -0.623 650 -0.322 275 0.025 275 0.025 275 0.025	29 0.03 74 0.03 74 0.03 74 0.03 74 0.03 74 0.03 74 0.03 74 0.03 77 0.03 77 0.03 77 0.03 77 0.03 77 0.03 77 0.03 77 0.03 77 0.03
· ·	.000 .00 .00 .00 .00 .00 .00 .00 .00 .0	000
	000 81 0 10 0 10 0 10 0 10 0 10 0 10 0 1	000 000 000 000 000 000 000 000 000 00
2	0.56 60 0.815 0.385 0.385 0.421 0.531 0.531 0.514 0.214 0.214 0.214	5 1 6.580 45 6.545 0.733 0.6437 0.6437 0.6437 0.6437 0.6437 0.6437 0.655 0.655 0.755 0.755
7 15	0.479 0 3 -11 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7 15 1.76 3 2 1 1. 3 -1. 5 1. 6 1. 7 1. 10 1. 11 1. 11 1. 12 1. 13 -1.

3,336 1,366 1,771 1,113	0.650 -0.075 0.344 0.061 -0.035 0.299 0.077 0.140 0.690 -0.011 -0.056 0.603 -0.031 0.215 -0.051 0.353 0.353 0.242 -0.021 0.215 -0.051 0.353 0.242 -0.020 0.455 0.245 0.703 0.344 0.068 0.360 -0.049 0.026 0.049 0.026 0.049 0.026 0.049 0.026 0.049 0.026 0.061 0.073 0.073 0.073 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.274 -0.040 -0.007 -0.034 0.173 0.476 0.446 0.160 0.356 0.160 0.396 0.140 0.0609 0.034 -0.026	0.952 -0.059 -0.041 0.031 0.073 -0.057 -0.009 0.068 -0.059 0.958 0.057 -0.009 0.068 -0.059 0.958 0.057 -0.009 0.068 -0.059 0.958 0.057 -0.009 0.073 0.250 0.443 -0.010 0.101 0.151 0.235 0.377 0.160 0.104 0.101 0.151 0.540 0.172 0.083 -0.009 0.101 0.058 0.177 0.160 0.104 0.101 0.058 0.154 0.177 0.083 -0.009 0.039 0.007 0.009 0.001 0.002 0.009 0.009 0.001 0.009 0.001
\$. \$ \$	0.789 0.093 -0.361 0.184 -0.369 0.272 -0.419 0.015 -0.035 0.287 0.211 0.050 -0.236 -0.107 -0.170 -0.609 0.047 -0.016 0.111 0.088 0.183 0.064 -0.075 -0.067	3669.195 .551 0.206 .377 0.022 .012 0.697 .085 0.035 .105 0.037 .105 0.037 .105 0.037 .105 0.037 .106 0.037 .202 0.057 .202 0.057 .203 0.253 .241 0.176
•000 0•020	0.012 -0.095 0.0-253 0.164 -0.0-0-6189 0.107 -0.0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	000 0.067 06 -0.083 0 14 -0.591 -0 10 -0.434 -0 33 -0.223 0 11 -0.195 0 97 -0.357 -0 72 -0.054 -0 72 -0.054 -0 73 -0.23 0 61 -0.195 0 61 -0.195 0 62 -0.070 0 64 0.034 -0 64 0.034 -0 64 0.034 -0
1 0.c78 12. 1.000	0.126 0.6485 0.485 0.687 0.687 0.687 0.131 0.381 0.381 0.381 0.381 0.381	1.000 1.0000 1.0
	0.372 0.514 0.514 0.514 0.554 0.534 0.564 0.568 0.568	1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 1 3 •566 60.003	0.652 0.439 0.5439 0.5439 0.5656 0.5777 0.338 0.2746 0.2746 0.2747	2 11. 2 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 15		3.926 0. 3.926 0. 3.926 0. 4. 1. 5. 1. 6. 1. 10. 1. 11. 1. 13. 1. 14. 1.

DATA SET " (cont.)

•	304	0.761		-0.255	-0.200	0.106		0.722	Ĩ	0.086	0.313	-0.012
0.0	265	0.672	0.293	0.331	0.237	0.188		0.281		0,713	0.213	0.063
;	166	-0.302		C. 343	0.307	0.402		060.0-		0.309	-0.035	-0.055
0	. 363	0.539		0.285	0.477	9.056		0.307	Ö	0.611	-0.013	0.375
9	334	1). 404		-0.283	0.206	0.372		0.755	u	0.124	0.010	-0.054
ċ	. 333	0.440		-0.299	-0.095	0.000		0.761		0.053	0.221	0.087
÷	403	0.481	-0.016	0.134	0.295	-0.166		0.358	O	0.457	0.041	0.406
ò	• 366	-11.372	167.0	0.213	-0.327	0.016		-0.060	J	-0.058	0.095	0.219
Ċ	٠. ٢	0.179	0.465	0.161	0.105	-0.736		00.00	J	- 0.019	-0.031	0. 958
Ċ	264.	0.424	0.626	-0.136	0.018	-0.024		0.629	O	-0.032	0.120	0.316
¢	.524	0.623	-0.048	-0.052	-0.166	-0.223		0.423	ï	0.107	0,272	0.231
0	45	0.375	-0.413	3.432	-0.052	7.194		00.00	ĭ	0.573	0.364	-0.034
0	.420	-0.144	0.430	0.274	-0.521	0.16P		0.061	C	-0.044	0.569	-0.026
0	114	0.316	-0.024	0.696	-0.322	-0.100		-0.054	U	0.515	0.662	0.308
0	•	•	0.182	0.017	-0.516	0.119		0.528		-0.00-	0.695	-0.014
•	. 551 0	0.495 0.	545									
4	-	0.879	111.000	740.0		5.997	1.183	2.159	2.118	1.547	~	
	£0.00°3 1.0	000										
	0.316	0.754	-0.011	1.037		-0.111		0.704	110.0-	0.323	0.361	0.061
	5		-0.27!			-0.184		0.275	ł	0.238	0.681	0.116
	9.334	-0.306	614.	042		-0.343		-0.083	_	0.045	0.334	-0.075
	7,353	0.533	.193	152		-0.03R		0.312	_	900.0	0.505	0.386
	9.292	0.474	0440	334		-0.416		0.757	U	013	0.151	-0.052
	0,240	7.723	.143	146		-0.063		0.746	0	223	0.073	0.156
	0.392	0.686	.018	124		0.166		0.345	0	050	0.438	0.451
	1.362	-0.335	. 689	156		0.059		-0.061	0	990	-0.047	0.213
	9.267	0.178	0.434	0.012	0.101	0.4.0		0.007	0.211	-0.032	-0.030	0.830
	0.391	7.423	. 634	991		-0.00R		0.648	O	115	-0.013	0.311
	0.438	0.549	.039	0.75		0.318		96E *0	۲	285	0.039	0.416
	404.0	J. 188	.425	380		-0.217		-0.005	7	408	0.587	-0.086
	£66.6	-0.149	0.461).579		-0.101		0.064	C	202	670-0-	-0.021
	0.343	9.216	-0.014	684		0.142		-0.063	-	650	0.445	0,321
~	16.7	777	()(26.7	9	1 1 1		. 57.3	•	,		

· -		• C-10•	2										
	~	0.700	63	.051	0.017	-0.064	9.046		0.131	•	0.095	0.141	0.108
•	0.111	0.389	•	0.024	0.012	-0.148	0.076		0.050	ċ	-0.022	0.195	0.089
	TO	0.170	8	.279	-0.246	0.399	£20°0-		0.626	°	3.007	С.	0.117
	Œ.	0.136	84	.207	-0.228	-0.015	-0-154		0.680	ċ	0.055	0.100	-0.027
	77	0.229	5	110	-0.131	0.032	-0.113		0.617	ċ	3.001	0.035	0.022
٠	ů,	0.407	9.	.013	0.137	-0.457	0.057		0.074	ċ	0.050	0.563	0.057
	6.9	9.317	Ų,	0.030	0.260	-0.008	0.051		-0.03	Ġ	0.029	0.706	0.004
•	43	3.566	52	132	0.035	-0.361	-0.0JA		0.194	0	0.019	0.443	-0.034
	0.627	0.17	7,	. 70%	-0.056	0.029	-0.023		-3.024		0.132	0.005	0.091
	76	0.231	5	. 315			-0.090		-0.00	9	0.016	0.053	-0.031
	a:	C. 31A	.26	. 736			-0.061		0.059	O	- 00.00-	-0.035	0.019
	ſ.		.5.6				-0.124		0.033	0	0.555	0.049	0.043
	ď		5		5,659		-0.204		0.004	٩	0. 787	-0.023	0.002
			9		0.273	113	500.0		0.046		0.404	0.014	0.176
	, ,			•	127	3.0	017 0		410.0-	i	0.127	0.023	0.566
	. 7		. 4	•	0.50	0.100	300			0.008	-0.023	0.021	0.527
		•	, (27.1		0.273		5	0.039	0.100	0.030	0.419
•		•	•	•			3.0		•		•	,	
11		~	0.994	16.000	0.067	_	5.030	1.949	1.083	1 56 0	0.664	4	
<u>င</u> ် -	.341 25	, ,	0:00	-			•	•	•	,	•	•	
•	•	•	46	•	0.011	-0.249	0.374		0.119	,	0.154	0.005	51
•	ď	•	1).337	.063		165.6-	4.		+00.00-	0	-0.011	0.038	69
•	α	_	. 74	.287		8 7 1	-0.071		10.401	9	0.054	0.020	03
•	25.755	0.205	763	286		0.010	0.0-		0.721	Ċ	0.014	0.142	0.031
•	~	(/4	. 757	015		0.027	-0102		0.705		-0.003	0.097	8
•	4	ω,	929			-0.264	-0.312		0.137	•	0.025	0.586	S
•	•	_	. 543			-0.372	-0.278		-0.025	c	0.009	0.643	0.046
	4	4	237			-0.230	-0.202		0.220	0-	-0.020	0.441	0.035
	•	~	.421		0.020	0.030	-0.066		0.033	o	0.182	0.027	-0.044
	-		.303	406	-0.054	-0.148	-0.070		-0.038	Ċ	700.0-	0.071	0.033
	•	₽~,	.325	. 736	-0.154	-0.1C7	0.023		0.062	ċ	0.010	-0.033	0.093
	٧.	•	955.		79.467	0.176	0.057		0.018	Ö	0.540	0.077	0.020
•	4:	•	_	-0.097	C. 46.9	0.244	0.120		-0.034	1	0.557	0.039	0.036
•	r		374.		0.225	0.252	0.032		•	•	0.500	0.027	-0.064
•	.53	•	73.0	_	0.019	0.169	0.156		2 A S	0.089	0.425	•	0.133
•	0.534	0.474	149.0	- 610.0-	-7.122	11	0.105		7.437	0.117	0.270	0.040	0.111
	•	•											

-020										1	,
0.0			0-316-0	.25d .483	24. 35.		.13	00:	•	0.507	0.011
	740 -0-74		30,40	37.3	-0.038		0.401		ċ	5,0	> ~
	0			220	6		0.685	•	0-	00	0.11?
•	2 -0.	•		3	4		0.135	ċ	ċ	-0.033	0.593
ur.	9	•			٥,٠		-0.027	٠ •	• •	0.2	0.626
2.0	۽ ڊ			60	4 1		0.213	; ;		•	9 6 6
7 6		•		77	7		040-0-		5 0		2,00
. ~	c		199 -0.0	96	-0.032		0.067	•	ó	90	-0.031
	.	•		15	.10		0.027	•	ċ	.02	0.090
•	-0-	•	~	800	.21		-0.033	0-	ċ	.03	0.041
ç	0.152	ı	S.	÷ 21	•05		0.192	ċ	ં	•06	3
0.750		•	œ	6 A	٠ <u>۱</u> ۴		0.416	•	ċ	= :	0
Ģ	0	_	œ	£3	ç.		. 4H	ċ	ံ	•00	0.04
٠,	0.34	0 -	7. -	24	-15		_	Ċ	င်	÷.	5
A 7C 0.	0										
1.003	13.000		C.047	4 46	45.652	1472.842	1284.756 11	147.724	96 3.05	57	
000.											
~	-0.053	-0-	6,40	3.352	٠,		ę., •	2	0.39	ó	0.225
•	0.02		060 -0.		٦٠		בַּי	0	00.0	2	0.074
_			245 0.		,		21.	0.0	00.00	5	0.632
	-0-16		277 04		-0.540) c	0	0.0	ဗ္ဗ	0.822
.3.575	50.00		0 102		-0.466		50.	•	10.0-	5:	700.0
0 1 9 0	0.0		70- 211		910-0		Ē	• •		9	0.146
0.670	0.105	751-0-5	157 -0.		0.140		0.00	0.037	10.01	0.409	-0.003
					0000		=			, 6	מניים ל
0.35.0	0.40				0.024		. 0		0.03	ָ מַל	400
0.272	2		122				9	Ċ	00.0	03	0.061
	ċ	:	70					c	0.4A	0	0.00
7:7					• •		Ć	0-0-	0.88	, 2	0000
8 - V - L	=	5	203		•		. 21	0.1	46.0	0.5	0.075
7.0	0	d	. Y	4 2 4			5	0.0-	0.03	3	-0.015
0.617	0.0	7 -0-	30	313			. 43	0.0	-0.00	9	0.190
63	01,10	-	.116.7	1.4.3	1		٠	70	-	4	640

	F=60000=0F64007.04	m i	e no e	er. J	 . •	~ 4	۰.	o -	٠,٠	من	~	ر د م	_
	0.347 0.025 0.025 0.025 0.027 0.037 0.039 0.139 0.233 0.233	E 0	0.028	-0.01	000	00.0	0.020	0.020	0.13	0.25	0.443	3 C	:
	00.00 00	0.17	0.104	0.103	0.673	0.510	0.036	0.034	0.056	6.012	035	0.167	 - -
	00-022 00-022 00-023 00-023 00-023 00-023 00-023 00-023 00-023 00-023 00-023 00-023 00-023	φ.	0.021	0.057 0.006		0.004	•	•				0.000	:
	0.052 0.052 0.052 0.054 0.056 0.736 0.736 0.736 0.736 0.736 0.736 0.736 0.736 0.736		-0.019	•	0.015	-0.034	0.796 -	0.799	0.013		0.1.3	-0.01.4 0.165	•
	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		10.0		0.014	0.127	0.019	700°C	-0.00	410.0	0.0.0	-0.021	
		. 445.											
	00000000000000000000000000000000000000	5,964	7.107	-0-140	-0.031 -0.031	-0.144	-0.0ct	150.0-	6 1 4 6 7 1	12.04	7.7.17	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	•
	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	21.0	196.0-			9.281	0.105	+ 40°0-	10.00	1.00.0-	3.004	\$ T-0-	
	2	_				-0.133				7		1.01.	}
		11.030	2 2 2		٠ <u>٩</u>	27	ê		<u> </u>		·	1 2 2 2 6	
00		0.031	0.14.0	0.774 -	0.86.0	0.542	0.104	70-0		17	•	f. 5.77	
1.000		, 1 t	3. 125 3.145). 147 0.244	7,1,0	164.0	2.150	(96.7.4)		3. 5. 74	11.5.63	2,726	
37.45 1AP.		5 1 8 50 40%	204 #14	2 2	72.4	0.507	0.13)	0.723		0.00	-	1,4 4,4	
£ 0.	4	, , ,	 :	.: <u>.</u> :	<u>-</u>	· <u>.</u> .	: :			. -	, • •	_ : _ :	:
=	でいる マンミン ロット・アット・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・		n, #	₹ .	٠.		2	=:			<u> </u>	-:	<u>.</u>

		<u>~</u>	ب		٠.	۷.	~		٠,	c	_	٠	<u>,</u>	<u>بر</u>		_	~		,				~	^	.•		<u>~</u>	_	•	۸.		_	•		_	۰.	ar.	~	
		0.025	00.0	000	0.05	0.03	0.65	0.61	0.444	0.05	-0.03	0.024	-0.07	0.064	0.0	0.0	-0.05	J. 20,	; ;				0.07	0.056	0.554	(746	0.464	-0.037	0.070	0.17	o. 0) io .o -	0.01	-0.01	0.70	J. JO5	J. 0.5	-0.CJ	-0.01
		0.777	0.417	.c.010	0.020	-0.014	0.007	-0.324	600.0	0.047	.0.024	0.038	-4.012	110.0	6.005	0.383	0.214	0.034	,		_		0.03%	0.077	0.303	-0.015	0.025	420.0-	0.103	-0.012	0.600	0.46)	0.954	-0.045	700.0			4 KO . O .	
1.082		-3.020	0.103	0.035	0.04B		0.053		-0.003	0.076	- 00.00-	0.00	0.748	13.672	0.502	0.281	0.170	0.231			870.723		0.145	3.017	0.033		0.077		0.490	0. 309	0.073	-0.01R			0.017	010.0	9, 144		0.70
1.226		-0.015	190.0	-0.052	-0.029	0.090	0.000	0.127	-0.039	0.733	0.785	0.905	-0.004	-0.011	0.213	0.161	0.043	0.188	•		1615.417		0.025	0.173	0.013	0.013	0.011										0.17	- 200.00-	0.153
		0.007	, c+2	. 702												240	630	1162			101		312	0,143	101	F10.0-	. 121	0.076	•	. 052			. 042	0.041	0.155	0.244	174	. 414	K 2 C .
1.668		0	Ó	0	c	C	?-	C	2	C	Ċ		0		3	C	C		•		1302.46.1		C	0	c	3.	•	0	5	3	0	ດ	•	3	•	¢.	2	c	2
132.																					1850.434																		
10.144		6.16.0	0.101	0.146	1.11.0	0.167	-0.4.07	-0.164	190	610.0	140.0	0.0	- 0 - 11 - 0 -	-0.147	(40.0-	0.074	0.224	C#0			116.1914		1.1.0	37.00). 117	-11.511	-9.275	0.220	0.07	-0.023	-0.010	200.0	10.034	0.040	101.0	0.127	0.14	11.307	0.143
		-0.591	-0.274	0.141	27.5	00.109				-0.452	150.00	-0.071			17.07	0.063	6.0.0	417			1,		.)00.	0.117	346.73	11.11.11	0.023	150.0-				-11.179		() . 6 '. 1,	U. A.C. 4.C.	0.00	195.0	ALC: 01	-61.173
3.067		7 45	760	6.1.0	-0.132	0.204	-0.207					-0.333		3.491	17.0	0.073	0.11	1001			3. 13.3		1 41. 4	1, 12.	0.011	3.13.		-				0.177		0.051	0.00			_	
1000.41		1.1.1.	.032	151.	. 321	.224	210	?		. 5.74	A A A &	1697	1.16.9	3.13	0.215	4	-0.14.7	, c		. 977	14.000		-0.173	0,071	-0-214	.713	24.3	. 143 -		141.	•				•			C. 12.1	_
6.949	ç						2.5				9.110	3.413	0.423	1.576	4.6			164		0.636	1.6.30	ç	, 4,4,6							0.54.2	1. 11 7	10.24 \$	70. 404	13.44.0	3.94.	5	11.11	13. 47. E.	1 23 .1.
-	000-1 000	1.704	2.03	3.201	61. 6	1. 74.1	0.777	0.111	0.513	7.4.71	3. 15.4	1. 741	141.0		7.407	7.44.7		16.4	•	. 6 17	1 1	.ac.1 1.ao.	3. 4.3	13. 434	13. 1.31	100.0	3.16.7	7. mi	165.3	3.539	.3. 56.4	1,434	16: 54	0.001	2,417	0. 151	10.404	3.7.1	1.654
	.90.45 AGP.	0. 172			4 44 0						3.642			7.153	0.511	1.644	•	. •		0 * 1 r · c	^	1.441 47.0	3.234						1.400	1(:4:0	6,4,0	7.417		0.040	7.446	4.17		1.002	1. 144
-	7	-	_	-	<u>.</u>	•	_	-	•				_	-					•	, ,ce.	· -		_		_	-	<u>:</u>	-:	-	_:	-	<u>:</u>		_:	_:	_	_	-	<u>-</u> :
c		-	•	_	4	J	ď	•	•	۶	2	-	2	-	-	· -	•	` '	•	ó		. 1 24	-	^	-	*		v.	-	٠	J	7.	=	2	_	-	<u>:</u>	-	1.

Safff of fine foots forth of the

IMTA (EC) (cont.)

: <u>.</u> .	17. 16.	44.	613	47.1.74	-11.054	40.443	- 12. 185		110.0	1	•	0.750	*
: .	1.7.1	199		40.0	141	- (. 6 %)	-(3.64.7		0.018	C		6.757	5
	64.0	3.2.5	1	-9, 127	9.149	0.172	-0-14v		0.765	-0.025	0.034	-0.010	0.031
: _:	4	* · · · · · · ·	0.71	•	0.147	9.114	-0.117		0.646	7		0.011	80
-	2.433	1.11		•	0.721	3. 1.74	-0.167		257.0	0	-0.012	-0.033	*
-	3,770	3. 33	7.874	٠	5.200	B86.31	6.417		-0.012	O		0.004	12
-	11. 76 ?	3	3.674	•	3.743	-40.277	104.0		-0.000	C		-0.031	0, 71.7
-	1.054	0.142	2.4.0	•	0.224	41,000	3.240		0.046	9	•	0.075	0.641
<u>:</u>	11.114	14(9.35	0.11	41.71	640.8-	-0.026		-0.036	3		0.039	440.0
-	26.6	4.7.6	7 11 °		5.0	5.074	-0.045		290°6	0	•	+40.0-	-0.035
-	1.744	7,714	2.414		1,784	2.001	-9.066		0.024	C		0.027	0.034
_:	1. 77A		1,47.		- 3. 565	1.163	2910		010.0	F		-0.024	-0.029
-	0.1.0	7,750	7.167		10.5.01	2.0.32	3.145		700°C-	7		0.005	0.097
_	3	1. 140	0.44.5		44.1.4	4.077	0.010		0.11.	0		0.03.)	450.0
	10.4.5	C 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	130.00		- 3.114	1 10.00	496		0.285	0		0.117	0.100
_	8.4.3		7.464	١	-0.000	40000			0.527	Ξ		0.301	-0.356
_	- · · ·	24.4.5		6. 154	1.60.6-	-0. 130	2.1.27		0.125	7	974	0.033	45.
=	,,,,,,	3.00	C. 443 U.	# C#.									
2	•,	-	0.244	. 27.336	0.130	_	. #C*6	2. 146	1.723	1.564	1.444	J	
7	7. *** **.		100										
-	7.710			34 - 21	- 3, 34,		-0.425		0.068	î	•	0.752	0.133
_	0,1,19	1-1 0		130.0-	-3.15		-0.307		-0.02	7		0.75+	0.073
-	L. 71.4			-0.113	0.141	0.245	-0.040		0.457	9	-0.005	-0.045	0.245
-	•	17. 347		-0.114	0.141	0.778	113.040		0.549	٩	0.014	-0.020	0.315
	2. 724	3. 275		-0.744	1.221	1.207	180.0-		9.624	C	-0.051	-0.04A	3.273
•	13. 74A	45.0		114.0-	0.237		10.10		0.011	0		150.0	U. 72 A
-	121.1	1.24.1	. 5.78	-0.102	40. 40.		756.0		0.05.6	C		0.013	0.6)3
-		٦.		-0.743	1. **				-0.00	1	•	011.0	C. 175
:	2.724	11.77	\$ * · · · · · · · · · · · · · · · · · ·	7. YC.	0.241		0.021		-0.02	0		0.03+	0.094
-	-	2.744	1. 114	C. 741			-0.040		0.077	0	-0.041	-0.041	-0.021
-	0,147	J C	* ! * · c	0.775	コピノ・ウ		-0.012		0°0°	C		0.021	0.053
<u>:</u>	n. The	*	4. Y.	, - · ·	-0.017		0.241		0.017	-		511.0-	-0.038
	0.4	2.7.0		4.113	* 11. 51. 7	-0.10*	11.786		0.021	7		0.00	0.092
•••	C. C. A. P.	11.11	7.6.6	G. 7 P.		0.013	£ 1.0		0.14%	9		0.003	J. 03.
	2.64.7		1117.	0, 14.		.1.174	-0,141		0.546	7			- 0.06 A
_	1 11	7, 111	2.0 44	.0.143		111.	F (9 " E' -		0.460		0.017	0.272	-0.072
٠.		•											

3523.879		-0.001 0.3?2 0.923 -0.001 0.706 0.706 -0.307 0.973 0.392 0.342 0.923 -0.001 0.706 0.706 -0.001 0.923 0.482 -0.001 0.923 -0.001 0.382 0.706 -0.001 0.706
35A1.879		
10820.321		
0.017		0.000 -0.760 -0.761 -0.504 -0.308 0.318 0.518
8.C00		0.450 0.511 0.754 -0.247 -0.444 -0.655 -0.403
060*0	000000000000000000000000000000000000000	0.754 0.816 0.754 0.754 0.815 0.754 0.816 0.816
-	1.900 3.000 4.000 5.000 7.000 7.000 10.000 11.000 11.000 11.000 11.000 11.000 11.000 11.000 11.000 11.000 11.000 11.000 11.000	0.001 0.001 0.001 0.001 0.001 0.001
-	0	
	4 6 6 6 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	6000 6000 6000 6000 6000 6000 6000 600
10	00.3828 00.3828 00.3828 00.3828 00.3818 00.3817 00.381	

								0.482	-0.001 0.706 0.706	6.923	0.736	282.0	-0.001	-0.001
c - + • •														
C. 477 10. COO 0. O. O. O.									511 0,269					
01 05.5.20	1.000 2.000 3.000	**************************************	6.000 9.000 9.000 10.000	000	000	000	000	,000	0.416 -0.511					
1 2 1	67.00.9 670.9 6.00.9	5.00 5.00 5.00 5.00 5.00	5.000	5.000 5.000 6.000	4.007	3.003	7.063 2.003	3.000.5	0.947 0.001				100.0 929.00	
10 7 3	3.325 0.676 0.471 0.670 0.319 0.559						3.417 0.567 3.417 0.667	9 . 0	: -	<u>.</u> .			- 1 - 0	• •

1.793		0.382	0.706	0.187 0.973 0.387	0.706	0.382	-0.001	-0.001	-0.001
1.793									
5.417									
0.033		-9.390	0.260	0.53.	C, 30A	-0.033	-0.519	-0.577	-0.544
000-01 656-0		0.650	0.511	0.244	-0.488	-0.655	-0.403	-0.023	0.361
6.49		0.754	0.814	0.754	0.816	9.754	0.754	0.816	0.754
-	0 1.0000 0 1.0000	160*	100.		00	100.	. 201	.001	100.
	9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.000.0	C (- c	20	Þ	0	0 666.0	
~	00000000000000000000000000000000000000	0					· ·		.0
6 61	00.00 00					6 1.	~	_	ء د

1.667 3.667 0.667

DATA SET 10 (cont.)

		0.923	0.707	0.392	-0.001	-0.001	-0.001	0.392	0.707	0,923	
		0.132	707.0	0.923	0.923	0.707	3.382	-0.001	-0.001	-0.001	
3584.578		-0.001	-0.001	-0.001	13, 182	0.707	0.923	126.0	5.707	0.382	
3584.578											
10820-422											
££0-0		0.040	-0.269	3.597	-0.408	-0.303	0.039	0.518	0.577	0.54 я	
3.000		_		0.294					-0.022	n. 361	
666.3		0. 754	0.816	1).754	0.754 -	0.836 -	0.754 -	0.754 -		754	
	1.0000 3.0000 5.0000 7.0000 7.0000 1.0000 11.0000 11.0000 11.0000 11.0000 11.0000 11.0000 11.0000 11.0000 11.0000										F.
-	6 4 4 4 4 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0			9 0.001							0.657
e.	0.00 0.00	0,940	0°0	9.09	665.0	0.039	3.999	0.999	0.094	060.0	9.667
6 01		1 1.	; I•	, I.	٠ ١٠	_	5 1.	7 1.	<u>.</u>	9 I.	0.667

32 1.792		-0.001 0.382 0.923 -0.001 0.706 0.706 -0.001 0.923 0.382 0.782 0.705 -0.001 0.923 0.382 -0.001 0.923 -0.001 0.923 0.382 -0.001 0.382 0.382
1.792		
5.415		
0.050		0.090 -0.581 -0.581 -0.408 -0.303 0.519 0.519
000°€ (666°0		-0.650 -0.511 -0.793 0.247 0.487 0.403 0.027 -0.362
60.00		0.754 0.9156 0.754 0.754 0.816 0.754 0.754
_	1.900 3.000 5.000 5.000 7.000 7.000 9.000 9.000 11.000 11.000 11.000 11.000 11.000 11.000 11.000 11.000 11.000	
~	0 0 4 W m m m m m 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6	0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 r		000000000000000000000000000000000000000
•		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9		-01422-40

3.647 0.647 0.647

DATA SET 10 (cont.)

		0,923	0.70	0.382	100.0-	-0.001	-0.001	J. 392	2.707	0,923	
		0.382		0.023				-0.001	-0.001	-0.001	
1.793		-0.001	-0.001	-0.001	0.382	0.707	6.453	0.923	0.707	0.382	
1.773											
5.417											
0.017		9.039	-3,267	-0.587	-0.50A	-0.303	0.040	0.513	0.577	0.547	
000.		0.650	0.511	0.293			-0.455	-0.402	-0.022	6• 362	
666.5		1. 754	3.816	3.754						0.754	
-	1.000 3.000 5.000 5.000 7.000 1.000 11.000 11.000 11.000 11.000 11.000 11.000 11.000 11.000 11.000										4
~		161.0			-	0.001	_	100°0	_	_	0.657
ر. د		9.99	0.996	9.299	0.493	636.0	660.0	0.043	0.93	7,999	0.667
r 01		-	2 1.	_	_	5 1.	_	-	-		169.0

14.720		4.910	000°6
0.017		0.031	F.C.0
0.00-13-000		9 00 %	7.710
606 *3	0.811 0.417 0.410 0.414 0.846 0.840 0.859	0.008 0.818 0.812 0.413 0.672 0.895 0.643	0.0047 0.700 0.410 0.653 0.694 0.306 0.306 0.306 0.306
- -	0.142 0.3149 0.172 0.6172 0.546 0.546 0.556 0.257	7 4.347 0.341 0.341 0.543 0.133 0.130 0.565	0.362 0.362 0.364 0.426 0.533 0.197 0.275
-	0.558 0.661 0.224 0.164 0.454 0.735 0.735	0.653 0.653 0.724 0.169 0.462 0.961 0.710	0.532 0.653 0.655 0.215 0.2165 0.903 0.903 0.724 0.724
٠	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	*	the first and that then had been the first ten.
=		m more 400 pp a c	

2005.944	5.176	000°6
0.017	0.017	9.317
1.00c 20.000 711 711 711 711 711 711 761 761	6. 030	9.000
1,000 0,711 0,711 0,711 0,340 0,541 1,000 0,761 0,571	0.925 0.937 0.835 0.470 0.975 0.975 0.975	0.853 0.EC? 0.809 0.587 0.552 0.858 0.858
0.495 0.465 0.465 0.915 0.973 0.001 0.421 0.674	2 0.3C7 0.3C7 0.715 0.777 0.253 0.253 0.263	3 1 0.345 0.346 0.656 0.478 0.747 0.307
7. 505 0.505 0.185 0.180 0.180 0.570 0.570	0.563 0.563 0.567 0.521 0.523 0.400 0.747	1.64.5 0.854.0 0.305.0 0.305.0 0.454.0 0.456.0
C	*	
en en v. w. 4 R, 40 en 46 fb		

901.268	1.25.	5.031	2012.124	3.544	
0.917	0.017	J. 017	0.017	0.017	0.033
0. 481100, CAQ 999 945 940 734 630	11.620	A.coo	\$. 010	o 10 ° *	6.033
0. c81 0.994 3.945 0.340 0.734 0.730	0.485 1.000 0.467 0.405 0.706 f.603	6.547 1.000 0.502 0.802 0.707 0.502	1.000 0.965 0.965 0.116 0.630	0.04.4 0.015 0.015 0.746 0.746	0.535 0.077 0.456 0.456 0.701
0.001 0.137 0.795 0.461 0.454	0.178 0.178 0.152 0.505	1 0.001 0.196 0.367 0.507	0.001 0.106 0.796 0.465 0.463	2 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2
95.0 6.50 6.05.0 6.05.0 6.05.0	1 0.609 0.822 0.643 0.655	0.0000000000000000000000000000000000000	0.064	0.043 0.443 0.443 0.413 0.413	44.00
٠	· · · · · ·		·	f	1° 6 6 5 5 6
in a service of	· · · · · · · · · · · · · · · · · · ·	~ ~~~	_ ~~~~	~ ~~~	en en e p

CHAPTER 13

DISCUSSION AND CONCLUSIONS

13.1 The Six Special Cases

Before discussing the results of the analyses of the twelve data sets it may be useful to relate the special cases of the loss and scaling function parameters to traditional factor analysis techniques. For convenience, we shall construct six five-letter acronyms. The first two letters will indicate the scaling parameter and the last three the loss parameter.

If the scaling parameter is p=0, the scaling matrix involves only the REsidual variance and the first two letters of the acronym for this case will be RE. If the scaling parameter is p=.5, the scaling matrix involves the sum of the residual and estimated or common variances which is the Total variance, and the first two letters of the acronym for this case will be TO. If the scaling parameter is p=1, the scaling matrix involves only the Estimated or common variances and the first two letters of the acronym for this case will be ES.

If the loss parameter is $P_W=1$, the loss function involves only the residual COVariances and the last three letters of the acronym for this case will be COV. If the loss parameter is $P_W=0$, then the loss function involves both residual VAriances and Covariances, equally weighted, and the last three letters of the acronym for this case will be VAC. Thus we shall have the following cases:

$$p = 0$$
, $P_W = 1$. RECOV
 $p = .5$, $P_W = 1$. TOCOV
 $p = 1$., $P_W = 1$. ESCOV
 $p = 0$, $P_W = 0$ REVAC
 $p = .5$, $P_W = 0$ TOVAC
 $p = 1$., $P_W = 0$ ESVAC

RECOV factor analysis it closely associated with maximum likelihood factor analysis developed by Lawley (1940) and with canonical factor analysis developed

by Rao (1955). As a matter of fact, the equations to be satisfied by RECOV and the latter two are equivalent. TOCOV factor analysis is closely associated with minres factor analysis developed by Harmon (1967). ESCOV factor analysis is similar to alpha factor analysis developed by Kaiser and Caffrey (1955). REVAC factor analysis has been discussed by Anderson and Rubin (1956) who have pointed out fundamental difficulties with the model. These we have met by the imposition of somewhat unsophisticated computational constraints. TOVAC factor analysis is the same as what many investigators call principal components analysis. Actually, any of the methods of factor analysis which is a special case of the loss and scaling parameters we have discussed may be regarded as a principal components analysis of a real symmetric matrix, whether or not all its roots are non-negative. ESVAC factor analysis, to our knowledge, has been previously discussed only by the author (Horst, 1965).

13.2 Summary of Results

We recall that m is the number of roots of the correlation matrix greater than unity and that for each data set this was the number of factors solved for. We recall also that the criterion \$\phi\$ is the ratio of the sum of squares of the m largest roots of a matrix with specified loss and scaling parameters to the sum of squares of all of its roots. The iterations for \$\phi\$ continued until the absolute value of the difference between two successive \$\phi\$'s was less than \$\cdot \cdot \c

Table 1 summarizes results for the twelve data sets.

The first column gives simply the arbitrary sorial numbers of the data sets.

The second column gives abbreviated identification of the data sets. The third column gives the number of factors solved for. The next column headed "Crit." (Criterion) gives for each data set first the approximation criterion ϕ and below it the simple structure criterion Ψ . To the right of each ϕ are respectively the number of iterations and the actual ϕ value for the six combinations of loss and scaling parameters. The first six columns following the column of criterion symbols give the data for $P_W = 1$ and the next six columns for $P_W = 0$. Within these sets of six columns, the first pair of columns gives the data for P = 0 and the next two for P = 0 and P = 1 respectively.

13.3 Rankings by Simple Structure Criterion

Perhaps one of the most important quentions to be answered is which of the six methods of analysis is the best as judged from the analysis of the twelve sets of data. One overall standard might be based on the simple structure criterion Ψ . Table 2 gives for each of the first nine data sets the rank order of the Ψ value for each of the six combinations of loss and scaling parameters. The first three columns of rankings are for P_{Ψ} = 1 and the last 3 for P_{Ψ} = 0. Within each set of three columns, the first gives the ranking for p = 0, and the next two for p = .5 and p = 1. Rankings for only the first nine of the twelve data sets are given, since the Ψ 's for data set 10 are all equal and no Ψ 's are given for data sets 11 and 12.

The Y row following the row for data set 9 gives the sum of the rankings for each pair of loss and scaling parameters. The next row gives the rank order of the sum of the rankings of these sums. The next row H gives the number of data sets for which Y had the highest ranking, and the last row L gives the number of data sets for which Y had the lowest rank.

It is clear from the last three rows of this table that the best method according to the simple structure criterion is ESCOV for p=0 and $P_{ij}=1$. This is the

alpha factor analysis model of Kaiser and Caffrey (1965). The poorest method is REVAC for p=0 and $P_W=0$. This is the model discussed by Anderson and Rubin (1956). In view of the problems encountered in this model, it is not surprising that it is poorest according to the simple structure criterion.

For these nine data sets, RECOV with p = 0, $P_W = 1$ is second poorest according to rankings of the simple structure criterion. This is the method closely related to the maximum likelihood and canonical models of Lawley (1940) and Rao (1955) respectively.

The methods in second and third place respectively are TOCOV with p=.5 and $P_W=1$, and TOVAC with p=.5 and $P_W=0$. These correspond respectively to the minres model of Harmon (1967) and to the classical principal components model.

Obviously, of course, the procedure we have used for the comparative evaluation of the six models is crude and is based on a very limited number of data sets. Furthermore, the criterion for the number of factors is arbitrary and other criteria may yield different results. In any case, it is quite possible that for any particular data set one may wish to determine the loss and scaling parameters P_{W} so as to maximize the criterion V. Such a procedure need not limit the value of these parameters to those used in this analysis.

13.4 Ranks by Number of Iterations Required

A further procedure for a relative evaluation of the six models may be based on the number of iterations required for \emptyset to stabilize to the specified tolerance limit. Table 3 provides an analysis similar to that of Table 2. Here, however, the rankings are for the number of iterations required for \emptyset given in Table 1 and all 12 data sets are included. In this ranking we exclude the 2-2 column since this is the principal axis method and except for peculiarities of the computer program, no iterations would be required. In any case, according to the last three rows of Table 3, ESVAC with p = 1, $p_w = 0$ is best and ESCOV with p = 1, $p_w = 1$ is

second best. This latter is the model which came out best in Table 2 based on the simple structure criterion Ψ . The poorest is RECO, with p=0 and $P_{\overline{W}}=1$, which came out second poorest in Table 2.

Again it is obvious that the rating procedure is crude and based on what some may regard as a questionable criterion for the number of factors. However, a cursory examination of Table 3 shows that in general the number of iterations required for \emptyset to stabilize tends to be substantially greater for RECOV than for the other models. It is believed that this tendency would persist even with other defensible criteria for the number of factors.

In view of the marked increase in iterations required for this model over those required for other models and at least some persuasive indications of poor simple structure potentiality, one might question whether this model is to be generally recommended. Since it is closely related to the maximum likelihood and canonical models, one might also question whether the great interest and effort accorded these models in the past is completely justified.

13.5 The Simple Structure Factors

A more detailed examination of the simple structure factor matrices given at the right of the tables in Chapter 12 for data sets 1 through 10 might be of interest. No simple structure matrices were calculated for data sets 11 and 12 since only one factor was obtained. The largest element in each row is underlined for all the simple structure matrices in data sets 1 through 10. For each data set there are six of these, one for each combination of the loss and scaling parameters. (See Chapter 12 for detailed description.) For the first nine data sets these simple structure matrices may be compared with those obtained by other investigators referred to in Chapter 11. Brief comments on the data sets might be of interest as follows:

- 1. Primary Mental Abilities. For all six models, the simple structure matrices are sharp and agree well with the results of Thurstone and Thurstone (1941).
- 2. Twenty-four psychological tests. According to the $\mathbb Y$ criterion, ESCOV with p=1, $P_W=1$ gives the best simple structure. This model corresponds to Kaiser's (1965) alpha model. A number of simple structure solutions are given by Harmon (1967) for this data set. However, his various solutions involve only four factors whereas ours has five. But all of his simple structure solutions give results easily recognized as similar. Our simple structure for ESCOV gives results similar to his for three of the factors. However, his solutions assign variables 14 through 19 essentially to a single factor, whereas ESCOV splits them into two factors, the first three going to one and the last three to another as follows:

14. Word recognition

17. Object - number

15. Number recognition

18. Number - figure

16. Figure recognition

19. Figure - word

Without referring in detail to a description of the original tests, it is not surprising that recognition of various types of visual stimuli should have a factor in common, and ability to associate pairs involving two different types of stimuli should have another factor in common. It is quite possible, of course, that if Harmon had included a fifth factor in his analysis he also would have found the same factor differentiation between these two triplets of tests. It is interesting to note that our TOCOV solution which corresponds to Harmon's minres does not appear to give as sharp a simple structure for five factors as his does for the four factors on which he uses a direct oblimin solution.

3. Thirty-three variable speed study. Of the six models, ESCOV again gives the highest simple structure criterion for the data from Lord (1956). Lord solved for ten factors by a modification of the maximum likelihood method. Our criterion

for the number of factors yielded only six factors. Lord's rotations were carried out by subjective non-analytical procedures so that his simple structure matrix is not comparable to our ESCOV with $P_W = 1$ and p = 1. However, referring to Section 11.3, the verbal, spatial, and number factors come out clearly as they do in Lord's analysis. In addition, a factor common to the two number speed tests (23) and (24) and Lord's reference tests for perceptual speed (25), (26), and (27) appears in our analysis. It is also interesting that in our analysis college grades tend to split, with English (28) going to the verbal factor, Engineering Drawing (30) to the spatial factor, and Foreign Language (29), Chemistry (31), and Mathematics (32) predominately to a factor that we might characterize as a facility with symbolic systems. A factor which Lord failed to find has only a single high loading on Conduct (33) and small positive loadings for the five grade variables (29) through (32). This may be a conformity factor considering the data are based on students in a military academy.

- 4. Thurstone's twenty-variable box problem. From this classical set of data there is little to choose among the simple structure factor matrices for the six models. As would be expected, three factors were obtained. With the exception of RECOV for p = 0, P_W = 1, the Y values do not differ by more than .001. For RECOV the value is only .003 less than the highest value of .646 for TOCOV, ESCOV, TOVAC, and ESVAC. The simple structure is clear for all cases with the X, X, and Z dimension variables coming out with only a single large loading for a factor and the functions of these variables indicated in Section 11.4 having the loadings that would be expected.
- 5. Eight-variable body type measures. All six models for this data set, yielding only two factors, give very clear simple structure as has been found by other investigators.

- 6. Twelve-variable anthropometric measures. In an early analysis of these data, Thurstone (1946) found four simple structure factors by subjective graphical methods whereas our criterion gave only three factors. For all models except RECOV and REVAC whose loss parameter p is 0, the Y values are in the high .80's with ESCOV again being highest with Y = .880. The simple structures for all six models are clear cut. Thurstone's B and D factors have both loadings of .45 or more on the three variables stature (1), span (5), and hand length (11). In addition, his factor B has high loadings on sitting height (2), and his factor D has a high loading on hand breadth (12). Our first factor tends to collapse these two factors, while our second and third factors are easily recognized as Thurstone's factors C and A respectively.
- 7. Fifteen variables from Hemmerle. Hemmerle (1965) does not give the source of this matrix nor does he identify the variables. Since he was concerned primarily with a computational procedure for the maximum likelihood factor model, he did not attempt a simple structure transformation. He extracted eight factors but does not state his criterion. Our criterion got only five factors. These data were included in our study primarily because Jöreskog (1967) as well as Horst (1968b) had also worked extensively with them. Both of us had found the data to behave peculiarly and our earlier results for eight variables were markedly different for the maximum likelihood methods of Jöreskog and our corresponding RECOV model. Even in the present study it is the only data set that has its highest Y value (.596) for REVAC which, from a theoretical point of view, is the poorest of the six models. Since nothing is known about the identity of the variables, nothing of substantive interest can be said about their simple structure factor loadings.
- 8. Seventeen-variable data from Bechtold--Sample 1. For this data set our criterion yielded only five factors whereas Bechtold (1961) had deliberately attempted to represent six factors in his battery, as indicated in Section 11.8.

In general, his V, W, S, and N factors come cut clearly in all bix models. The memory factor for variables 1 and 2 fails to come out clearly in RECOV which has the highest Y value, although the reasoning factor R for variables 15, 16, and 17 comes out clearly in this model. The only other model for which R comes out clearly is the suspect REVAC which also fails on the M. It is quite probable that our criterion for number of factors was too low for this data set.

- 9. Seventeen-variable data from Bechtold--Sample 2. Since the tests in this data set were the same as for data set 8 and the sample was presumably comparable, the results should be substantially the same for the simple structure matrices. As in the previous set, the criterion yielded five factors. For all six models, the V, W, S, and N factors are clearly defined. As in the previous set, the M factor for variables 1 and 2 appears in all models except RECOV and REVAC but somewhat less clearly in TOCOV. The R factor for variables 15, 16, and 17 appears most clearly as a distinct factor in RECOV and TOCOV. Here again, it is highly probable that our criterion for number of factors was too restrictive.
- 10. Nine-variable synthetic data. The origin or source of this data set is described in detail in Chapter 11, Section 10. The correlation matrix was constructed so that the simple structure factor loading matrix would have three factors and, to three-decimal accuracy, this matrix would be as follows:

	I	II	III
1	000	.383	.924
2	•000	.707	.707
3	•000	.924	.383
4	•383	924	.000
5	. 707	.707	.000
6	.924	.383	.000
7	.924	.000	.383
8	• 707	•000	.707
9	•383	.000	.924

It can be shown that if one allocates three points on each of the arcs of a right spherical triangle as indicated in Chapter 11, Section 10, then to three decimal places the cosines of the angles of each of these nine points with each of the three vertices of the spherical triangle will be as shown in the matrix above. For some decades we have been trying to find an analytical procedure for recovering this matrix from the correlation matrix of these points. To our knowledge, none of the analytical methods previously available will accomplish this recovery. Referenle to Chapter 12 for the results from this data set shows that the simple structure factor matrices for all six models differ at most from the above matrix by .001. For all six models, the sets of simple structure iterations went to the prespecified limit of twenty. For each model the number of iterations for the first set went to the prespecified limit of sixty. Thereafter, however, the number of iterations required for the successive sets diminished rapidly to two or three. It is quite probable that if no limit were placed on the number of sets of iterations, the original simple structure matrix could be recovered to any desired degrees of accuracy.

13.6 Improper Solutions

A factor analysis model whose loss function involves only the residual covariances may yield communalities for some tests which exceed unity. Such a result is known as a Heywood case. These factor analysis models are our RECOV, TOCOV, and ESCOV which correspond respectively to Lawley's (1940) maximum likelihood, Harmon's (1967) minres, and Kaiser's (1965) alpha. It is of interest to note that for none of our data sets does our method of computation involving real data give communalities as high as the constrained values of .9995 for any of these three cases. This is not true for Harmon's (1967) minres on data set 2, where he obtains his maximum constrained communality of unity for variable 19.

When an unconstrained solution yields communalities greater than unity, this is sometimes called an improper solution. In the case of maximum likelihood solutions, Jöreskog (1967) observes that, "Experience varifies that improper solutions are found more often than is usually expected." Our RECOV computational algorithms have been applied to some of the data sets on which Jöreskog has applied his computational algorithms for the corresponding maximum likelihood method. In general, where we have used the same number of factors, neither of us has encountered an unconstrained improper solution. However, for the case of data set 7 from Hemmerle for eight factors, Jöreskog's (1967) procedure found it necessary to constrain variables 7 and 15 whereas our (Horst, 1968b) procedure up to 10,000 iterations found no improper communalities. A highly accelerated modification of our procedure did not require the constraining supplements in the computational procedures. Nevertheless, it is not improbable that for a completely adequate factor analysis system, the occurrence of improper communalities would signal either the use of inappropriate loss or scaling parameters, an inappropriate criterion for the number of factors, or some combination of these

.965 .964 2 - 3 ESVAC- 1.0 000. .963 .597 Iter. m 8 20 98 98 .969 .963 3,000 .969 88 TOVAC- 0.5 0 11 1ter. P. ოფ 48 **≠**8 Iter. Crit. 16 | 1.000 15 | .953 1.000 646 1.000 83.3 REVAC- 0.0 13 88 15 Iter. Crit. 10 .999 18 .958 1.000 646 . 827. .66. ESCOV- 1.0 08 유축 ක ශු TABLE 1 TOCOV - 0.5 Iter Crit. 15 1.000 14 .959 8.8 8.8 8.8 88 1. 849. Н Н 4 ထပ္တ 16 59 **33** 1.000 .959 1.00 643 8,5 £83. 0.0 Iter. RECOV 23 28 **#8** Crit. 13 P 1 D 1 D No. 9 5 m ~ 8 8 % 33 Φ え 8 Test DATA Lord Lord Psy F Box

73-15

.956 .946 .858 .853 .935 €.88 €.88 .879 .476 . 669 72 ¥66. m \$ 977 Ø 8 18 25 22 27 .958 .846 .953 566. .953 .925 .891 .874 188 1694 .667 9 23 4 15 7 13 **4**8 **-**:+ 4 1.000 1.000 .843 1,000 1.000 1.000 .596 86. 1.000 3 31 はい 8 S 42 53 78 .975 .880 . 1978 1984 \$6.8 \$3 8.8 8.8 88 989 .997 .987 38 のさ 38 26 œ 32 32 <u>~</u> 김路 검육 88 .581 807 \$3 868 869 998 .985 .981 877 200 16 25 9 122 され 563 33 H .583 .981 . 875 775 8,8 8,2 86. 8,8 .995 ထ်လွှဲ 88 88 元型 88 13 43 188 < 10° & B 10 P E P 4 8 (P 12 1 m Ś Ś Ś m -4 N 9 Ś Ø 22 15 17 9 - 1/17 Ö Body Types Synthetic Bechtold Bechtold Hermerle m) one on Anthro Davis N m 9 Ø Φ 2 1 C

TABLE 2
SIMPLE STRUCTURE CRITERION RANKS

		P _W = 1	!		P _W = 0	
Data	RECOV	TCCOV	ESCOV	REVAC	TOVAC	ESVAC
Sets	1-1	1-2	1-3	2-1	5-5	2-3
1	3 <u>ફે</u>	3 1 /2	2	1	5	6
2	2 <u>날</u>	11	6	2 <u>}</u>	5	4
3	2	4	6	5	3	11
4	1	4 1	4 1	2	4 <u> </u>	4 }
5	2	<u>}</u> +	6	1	14	14
6	2	5	6	1	14	3
7	5	ļ	3	6	1	2
8	6	5	2	3	.4	1_
9	3	4	G	1	5	2
Σ	27	35	41 ½	22]	35}	27 }
Rank	5	5	6	1	ف	3_
н	1	1	5	1	1	2
L	1	ì	0	i,	ì	2

and the second s

TABLE 3

RANKINGS BY NUMBER OF ITERATIONS REQUIRED

Data	RECOV	TOCOV	ESCOV	REVAC	TOVAC	ESVAC
Sets	1-1	1-2	1-3	2-1	2 - 2	2-3
1	6	4	3	5	1	2
2	6	5	2	Ļ	1	3
3	6	5	2 <u>7</u>	4	1	2 <u>1</u>
14	6	3 2	. 3 1	5	1 1	1 1
5	6	5	3	4	1	2
6	6	5	4	2 <u>7</u>	1	2 <u>1</u>
7	6	5	4	2	l	3
. გ	6	5	4	3	1	2
9	6	5	3	2	1	14
10	4	5 <u>1</u>	5 <u>1</u>	2	2	2
11	5	4	2	6	1	3
12	6	5		2	1	3
Σ	69	57	40 2	41호	13 ½	30 <u>1</u>
Rank	1	?	4	3	6	5
Н	11	0	0	1	0	0
L	0	C	0	0	12	0

CHAPTER 14

COMPUTER PROGRAMS

The Fortran IV computer programs for carrying out the analyses of the previous chapters consist of a main program (MAIN) and overlay subroutine subprograms called by the main program. The overlay subroutines are called SYMI, JACS3, JACS, RARE, SIMP, and DUPLI.

14.1 MAIN

The main program provides parameter values required for the computations, an outer loop for the data sets, an intermediate loop for the loss parameter, an inner loop for the scaling parameter, and a call to the output overlay subroutine DUPLI.

The parameters. It is standard practice to read in parameters from cards along with the data cards. Particularly is this true if the program deck is a binary deck. It is our opinion that binary program decks are essentially obsolete, especially with the rapid compilers currently available. It is usually desirable to have the source program immediately available with the output of a given computer run, together with all the program parameters and option codes that were used in the computer run. We have been repeatedly frustrated in attempting to assist laymen in the interpretation of their computer output by the fact that they used binary program decks and therefore could provide no information about the program parameters, option codes, and the computing algorithms utilized.

If a source program deck such as Fortran IV is used, it is possible to read in program parameters and option code cards as data and these cards can be varied to suit the requirements of the investigator and his data. However, it may be convenient in research with various data analysis models to provide some of this information in program statements so that they may be readily found at the beginning of the program listing. Some of these values are given at the beginning of MAIN.

A number of them are repeated with different numberical values. The last time the

replacement statement appears for a parameter variable is of course the value it takes in the program. It has been found convenient for research purposes to provide a number of values which may be changed merely by changing the position of the statement.

The parameters area as follows:

P tolerance limit

LIB beginning indexing parameter for loss parameter

LIE ending indexing parameter for loss parameter

Lb beginning indexing parameter for scaling parameter

LE ending indexing parameter for scaling parameter

NL iteration limit for simple structure iterations

NF1 ending indexing parameter for row scaling option of factor matrix

KKL iteration limit for principal axis solution

EE Tolerance limit for specificity variance

The outer loop. This is the loop with the index LLL and the indexing parameters 1, NP. This loop controls the number of data sets processed in a given run. The data for each set consists of the number of variables in the set, the format of the correlation matrix, and the correlation matrix itself. The loop calls the subroutine SYMI which provides initial estimates of the residual variances and JACS3 which determines the number of factors.

The intermediate loop. This is the loop with the index LLI and indexing parameters LIB, LIE. It calculates the loss parameter P_W . In this program the calculation of only P_W = 1 and P_W = 0 are provided for but any desired intermediate values could be provided with slight modification.

The inner loop. This loop has the index LL and the indexing parameters LB, LE. It writes the parameters LLL, N, LI, LLI, LL, and NF1 on scratch tape. It calculates functions of the scaling parameter p which are used in the calculation of the scaling matrix. In this program only three loss function parameters are provided for. These are p=0, p=.5, and p=1. However, as in the case of the loss parameter, any desired intermediate values could be provided with slight modification.

This loop also calls JACS which calculates a first approximation to the basic structure factor matrix and RARE which calculates iteratively the simple descaled matrix from the basic structure factor loading matrix. If, as is usually the case, the number of factors exceeds 1, this loop also calls SIMP which calculates the simple structure factor loading matrix.

<u>DUPLI</u>. This subroutine is outside the outer loop of MAIN. It reads from scratch tape the data that is to be printed and writes it on BCD tape in the formatin which the data in Chapter 12 are given.

14.2 SYMI

This overlay subroutine reads in the data, calculates the inverse of the correlation matrix, and then calculates the first approximation to the residual variances.

Data input. A single card giving the number of variables N is read with format.

(I4). The program has been dimensioned for up to 80 variables. It could probably be extended to 85 and, with some rewriting, to 90. An A-format card giving the format of the correlation matrix is read. As the

program is written, each row of the correlation matrix must begin on a new card. The program assumes that at least the infra-diagonal elements are given. The supra-diagonal elements must either be given or treated as zero. In either case the program then writes the supra-diagonal elements and enters unity in the diagonals. Then the correlation matrix is stored on scratch tape.

Matrix inversion. The program calls a regular subroutine SYMIN to invert the correlation matrix. If SYMIN finds that the correlation matrix is not basic or positive definite, it returns control to SYMI, the overlay subroutine, which shrinks the offdiagonal elements by a factor of .9. This factor is arbitrary. It can be shown that if the offdiagonal elements on any correlation matrix are multiplied by a positive value less than unity, the resulting matrix will be basic and hence have a regular inverse. SYMIN is again called to invert the modified correlation matrix.

Residual variance approximation. The reciprocals of the diagonal elements of the inverse of the correlation matrix are calculated. These provide the first approximation to the residual variances. They are written on scratch tape.

14.3 JACS3

This subroutine reads the correlation matrix from scratch tape on which it was written by SYMT. It calculates, by an adaptation of the Jacobi method, all the roots of the correlation matrix in order of magnitude which are greater than unity. It transmits the number of these roots to common core storage as the number of factors.

14.4 JACS

This overlay subroutine reads the necessary data from scratch tape. It then calculates the first approximation to the modified correlation matrix with specified loss and scaling parameters, and the first approximation to the basic structure matrix.

The data. The correlation matrix is read from scratch tape on which it was written. Without rewinding, the first approximation to the residual variance vector is read from the same tape.

The scaling matrix. The communality variance is calculated. The scaling matrix is calculated as a function of the communality and residual variance vectors and the scaling parameter.

The modified correlation matrix. The correlation matrix is scaled by the scaling matrix. The diagonals of the resulting matrix are adjusted according to the current loss parameter.

The basic structure matrix. Subroutine JACSIM is called. This subroutine calculates the first m principal component or basic structure vectors of the modified correlation matrix where m is the rumber of roots greater than unity found in Section 14.3. This is the first approximation to the principal axis matrix for specified loss and scaling parameters. The principal axis matrix is written on scratch tape.

14.5 RARE

This overlay subroutine calculates the descaled principal axis matrix for current loss and scaling parameters. It reads the necessary data from scratch tape. It then calculates a first approximation to a descaled principal axis matrix and a second approximation to the scaling matrix. It calculates iteratively the descaled principal axis matrix for predetermined loss and scaling parameters. It writes output data on scratch tape. Next it effects row sign reversals if needed. Finally, it transfers data to scratch tape.

Input data. The correlation matrix is read from scratch tape. The first approximation to the principal axis factor matrix is read from another scratch tape.

<u>First descaled principal axis matrix</u>. The descaling matrix for the first approximation to the factor loading matrix is calculated. The first approximation to the descaled factor loading matrix is calculated.

The scaling matrix. Second approximations to the communality and residual variance vectors are calculated. A second approximation to the scaling vector is calculated from these two vectors and functions of the scaling parameter.

Successive descaled principal axis matrices. A loop with index KKK and indexing parameters 1, KKL is set up to call iteratively subroutine RARED. This subroutine calculates successive approximations to the descaled principal axis matrix f for the loss and scaling parameters determined within the inner loop of MAIN. The computations are carried out by the algorithms indicated in Chapter 8. The subroutine includes a constraint to keep the residual variances positive. It also calculates the criterion ϕ of Chapter 12 and the difference between two successive ϕ 's as a convergence tolerance.

Output data. The final & value, the number of iterations taken, and the total time in seconds are written on the scratch tape which will subsequently be read back for output. The first m roots of the final modified correlation matrix are also written on this tape.

Sign reversals. The first element in each row of the final descaled principal axis matrix is checked for sign. Sign reversals by row are made where necessary.

Transfers of output data to tape. The final descaled principal axis matrix, together with the sign vector and the final communality and residual variance vectors, are written on the scratch tape for output data. The final descaled principal axis matrix is also written on another scratch tape to be read subsequently for further operations.

14.6 SIMP

This overlay subroutine calculates the simple structure factor loading matrix. It provides parameter values and options of row scaling for the descaled principal axis matrix. It has a major outer and an inner iteration loop for calculating the simple structure matrix. It writes the output data on the output scratch tape.

Parameter values. The parameter LLE gives the limit on the number of sets of iterations. The parameter ML is used in calculating the F value in Eq. 9.7.

Row scaling option. The program normalizes the principal axis matrix by rows before beginning the simple structure iterations. The final simple structure matrix is denormalized before being written on output tape. This solution is given by using the parameter NFl = 1 in MAIN. This parameter serves as the end indexing parameter in SIMP for the DO index LLL. If in addition to this solution it is also desired to have a solution without first normalizing by rows, the parameter NFl = 2 is used in MAIN. The program does not provide for just the non-normalized solution but with slight modification it can be made to do so.

Outer iteration loop. The major outer iteration loop has the index LLL4 with indexing parameters LLB, LLE. This loop provides for successive sets of iterations where the exponent F decreases with each succeeding set. The value F is calculated as a function of the index LLL4 and the parameter ML. For each iteration set, this loop also writes on the output scratch tape the tolerance criterion, the simple structure criterion, the number of iterations, and the number of the iteration set. For each set of iterations, this loop determines whether any vector of simple structure factor loadings has less than m negative values. If so, no further set of iterations is calculated.

Inner iteration loop. This loop has the index LL with the indexing parameters 1, NL. It calculates iteratively the transform sion matrix and the simple structure factor matrix by means of the algorithms given in Eqs. 9.57 through 9.71. For each iteration it calls the subroutine SYMI3 which calculates the inverse of a positive definite symmetric matrix. Within this loop also is calculated the criterion value. If two successive values are within the tolerance limit, the iterations are terminated.

The final simple structure matrix. After the successive sets of iterations are terminated, the program recognizes as the simple structure factor matrix the one calculated in the next to last set of iterations, unless only one set was calculated. In the latter case, the matrix calculated in the single set of iterations is recognized as the simple structure matrix. For the calculations beginning with a row normalization of the principal axis factor matrix, the final simple structure matrix is denormalized by rows. In either case, the final simple structure matrix is written on the output scratch tape. The vector of Y criterion values for each simple structure factor vector is also written on the output scratch tape.

14.7 DUPLI

This overlay subroutine reads the data on the output scratch tape and writes it on BCD output tape according to the format of the data in Chapter 12. The subroutine has an outer loop with index LS and indexing parameters 1, NS so that NS copies of the output will be printed.

```
MAIN
    DIMENSION JI1901
    COMMON P,NL,N,NF,L,KI,KKL,KK2L,NA,E1,EF,KK3L,HH,KKK
   *,NC,FF1,FF2,LL1
   *, PD, QO, PW
   *,NF1
   *,TIM
   *,L!
   *, LLA, NP, LIB, LIE, LP, LF, JI
    P = .00001
    NP = 7
    NP = 9
    MP = 5
    NP = 3
    NP=1
    NP = 4
    NP = 2
    NP=12
    LB=3
    IR=2
    LB=2
    1.E=2
    L 9= 1
    LIE=1
    [ [B=1
    LIF=?
    I.F = 1
    [ F = 3
    NL = 30
    NL = 100
    VL = 60
    NF1=2
    MF1=1
    KKL =10
    KKL =50
    KKL =100
    FC= . UO5
    FF=.0005
    REWIND B
    £7=0
    WRITT(6,000)
COO FORMAT(141)
    OU SAN FIFE 1. NO
    CALL SYMT
    CALL JACS?
    ON REZ LLIELTHILTS
    PH= 7-111
    OU SET IFFER'TE
    WEITE (6,902) LLL, N, LI, LLI, LL, NF1
GALDITAMADA COD
    WRITEIG, 7971
COP FORMATITY
    L7=L7+1
    WRITEIN!!!!!\N,LI,LLI,LL,NFI
    P7=3-11
```

```
PN=PN/2.
    QD=1.-PD
PQ=1.-?.*PD*QD
    PD=PD/PQ
    QD=QD/PQ
    CALL JACS
    WRITF(6,993)
993 FORMAT(///)
    IF(LI-1)880,831,880
890 CONTINUE
    CALL SIMP
    JI(L7)=LLA
891 CONTINUE
882 CONTINUE
    WRITE(6,999)
ARR CONTINUE
    REWIND A
    WRITE(6,939)
    CALL DUPLI
    STOP
    FND
```

The second second second

```
SURIGIN
                ALPHA
$1BFTC SYMI11
      SUBROUTINE SYMI
      DIMENSION R(80,80), Y(80,80), A(86)
     *, DE(80)
     *, FM(12)
      COMMON P,NL,N,NF,L,KL,KKL,KK2L,NA,E1,EE,KK3L,HH,KKK
     *,NC,FF1,FF2,LL1
     *, PD, QD, PW
     *, NF 1
     *,T[M
     *, L I
     *,LL4,NP,LIB,LIE,LB,LE,JI
      REWIND 2
      REWIND 3
       REWIND 4
      REAC(5,992)N
  992 FORMAT(14)
      READ(5,991)(FM(I),I=1,12)
  991 FORMAT(12A6)
      20 502 I=1.N
      PFAD(5,FM)(R([,J),J=1,N)
  502 CONTINUE
      DO 4 T=1.N
      00 2 J=1,N
      R(1,J)=R(J,1)
    S CONTINUE
      R[[,[]=].
    4 CONTINUE
      DO 12 1=1,N
      IN. I=L. (L. T) A) (C) 3TIRM
   12 CONTINUE
      15=0
      CALL SYMIN(R,N.15)
      IFI IS160,64,60
   60 CONTINUE
      S CHIMBS
      20 61 1=1,M
      PEADITHRIT, J. J. J. 1, N1
   AT CONTINUE
      00 63 T=1.N
      10 67 J=1.N
      P.*(L,!)4=(L,!)9.9
   62 CONTINUE
      R([,[]=].
   63 CONTINUE
      CALL SYMINIR, N. 151
   64 CONTINUE
       00 501 I=1.N
      D[[]=1./R[[,])
  501 CONTINUE
      IN. 1=1, (1) 3C | (2) 4T | THE
       REWIND 2
      RETURN
```

FND

SIBFTC SYMIT

```
SUBROUTINE SYMIN (S.N.IS)
     DIMENSION S(80,1)
     N1 = N-1
     DO 04 I = 2.N
     I1 = I-1
     DO 04 J = 1,11
04
     S(1,J) = 0.0
     C = 1.0/SQRT(S(1,1))
     S(1,1) = 1.0
     DO 13 J=1.N
     S(1,J) = S(1,J) * C
13
     DO 21 K=2,N
DO 17 J=1,N
     K1 = K-1
     DO 17 I=1.K1
     S(K,J) = S(K,J) - S(I,K) + S(I,J)
17
     IF(-S(K,K))60,61,61
  60 CONTINUE
     C = 1.0/SQRT(S(K,K))
     00 191 I=1,K1
191
     S(1,K) = 0.0
      S(K,K) = 1.0
     DO 21 J=1,N
S(K,J) = S(K,J) * C
21
     DO 30 J=2,N
     J1 = J-1
     DO 30 I=1,J1
DO 30 K=J,N
30
     S(I,J) = S(I,J) + S(K,I) * S(K,J)
     DO 35 J=1,N1
S(J,J) = S(J,J) **2
     J2 = J+1
     DO 35 I=J2,N
S(J,J) = S(J,J) + S(I,J)**2
35
      S_{i}N) = S(N_{i}N_{i}) + 2
     DO 42 I=1.N1
     12 = 1+1
     DO 42 J=12.N
42
      S(1,1) = S(1,1)
      GO TO 62
  61 CONTINUE
      15=1
  62 CONTINUE
     PETURN
       FND
```

```
SORIGIN
                ALPHA
SIBFTC JACS2
       SUBROUTINE JACS3
       DIMENSION R(160,80],0(80)_
      COMMON P.NL,N.NF,L,KL,KKL,KK2L,NA,E1,EE,KK3L,HH,KKK
     *,NC,FF1,FF2,LL1
     *,PO,QD,PW
     *, NF1
     *,TIM
     *, [ ]
     *, LLA, NP, LIB, LIE, LB, LE, JI
       00 53 I=1.N
       READ (2)(R(I,J),J=1,N)
   53 CONTINUE
       REWIND 2
 06
       N1 = N+1
 061
      N11=N-1
 07
       N2 = N*2
 80
       DO 10 I=N1, N2
       00 \ 10 \ J = 1.N
 09
       R(1,J) = 0.
 10
       00 12 I=1.N
 11
 111
      NI = N + I
 12
       R(NI,I) = 1.
      RIM=1.
       00 \ 36 \ I = 1.011
       I1 = I+1
   13 00 35 L = 1.NL
       48=0.
       DO 284 J=I1.N
       RIJ=ABS(R(I,J))
       AB=AMAXI(AB,RIJ)
       IF(P-RIJ)40,42,42
   40 CONTINUE
       LR=1
       DR=R(I,I)-R(J,J)
       DRR=DR**2
       AK = SURT(DRR/(DRR+4.*R(1,J)**2))
       SD=SIGN(1.,DR)
       A=SQRT((1.+SD*AK)/2.)
 22
       B = SQRT (1.-A**2)
 221
      C = SIGN (1.,R(I,J))
       AC=A*C
       BC=B*C
 23
       00.252 \text{ K} = 1.82
       U = R(K,I)*AC + R(K,J)*B
       R(K,J) = -R(K,I)*BC + R(K,J)*A
       R(K,I) = U
       R(I,I)=R(I,I)*AC+R(J,I)*B
       A \neq (L, L) A + DB \neq (L, L) A = (L, L) A
       R([,J)=0.
       R(J, I)=0.
       DO 283 K=1,N
       R(I,K)=R(K,I)
       R(J,K)=R(K,J)
  283 CONTINUE
   42 CONTINUE
```

```
284 CONTINUE
     1F(P-AB144,43,43
 44 CONTINUE
35
    CONTINUE
 43 CONTINUE
     IF(RIM-R(1,1))45,46,46
 45 CONTINUE
     LI=I
  36 CONTINUE
 46 CONTINUE
     00 332 I=1,LI
332
     D(I) = R(I,I)
     RETURN
     FND
```

```
SURIGIN
               AL PHA
$IBFIC JACS1
     SUBROUTINE JACS
     DIMENSION R(160,80),D(80),A(80)
    *, DE(801, DA(80)
     COMMON P,NL,N,NF,L,KL,KKL,KK2L,NA,E1,FE,KK3L,HH,KKK
    *,NC,FF1,FF2,LL1
    *,PD,QD,PW
    *, NF 1
    *,TIM
    *,LI
    *, LLA, NP, LIB, LIF, LB, LF, JI
      DO 504 I=1.N
     READ(2)(R(I,J),J=1,N)
 504 CONTINUE
     READ(2)(DE(I),I=1,N)
     REWIND 2
     PK=0.
     DO 61 I=1.N
     DA([]=1.-DE([]
     A(I)=1./SQRT(PD+DE(I)+QD+DA(I))
     PK = AMAX1(PK .PW*DE(I)*A(I)**2)
  61 CONTINUE
     DO 63 1=1.N
     00 62 J=1,N
     R(I,J)=\Lambda(I)R(I,J)+\Lambda(J)
  62 CONTINUE
     R(I,I) = (1.-PW*DE(I))*A(I)**2+PK
  63 CONTINUE
     CALL JACSIM(R,D,P,N,NL,LI)
     L=L I
     90 507 J=1,L
     D(J)=SQPT(D(J)-PK)
     DO 505 I=1,N
     IN= I+N
     R(I,J)=R(IN,J)*D(J)
 505 CONTINUE
     WRITE(4)(R(I,J),I=1,N)
 507 CONTINUE
     REWIND 4
     RETURN
```

END

\$1BFTC JACSIL

```
SUBROUTINE JACSIM (R,D,P,N,NL,LI)
     DIMENSION R(160,80),D(80)
06
     N1 = N+1
061
     N11=N-1
     N2 = N*2
07
08
     00 10 I=N1, N2
09
     10 \ 10 \ J = 1.N
10
     R(I,J) = 0.
11
     DO 12 I=1,N
     NI = N + I
111
12
     R(NI,I) = 1.
     DO 36 I = 1.N11
     I1 = I+1
  13 00 35 L = 1,NL
     AB=O.
     DO 284 J=I1,N
     RIJ=ABS(R(I,J))
     AB=AMAX1(AB,RIJ)
     IF(P-RIJ)40,42,42
  40 CONTINUE
     LR=1
     DR=R(I,I)-R(J,J)
     DRR=DR**2
     AK = SQRT(DRR/(DRR+4.*R(I,J)**2))
     SD=SIGN(1.,DR)
     A=SQRT((1.+SD*AK)/2.)
22
     B = SQRT (1.-A**2)
     C = SIGN (1.,R(I,J))
221
     AC=A*C
     BC=B*C
     DO 252 K = 1.N2
23
     U = R(K,I)*AC + R(K,J)*B
     R(K,J) = -R(K,I)*BC + R(K,J)*A
252
     R(K,I) = U
     R(I,I)=R(I,I)*AC+R(J,I)*B
     R(J,J)=-R(I,J)*HC+R(J,J)*A
     R(I,J)=0.
     R(J, 1)=0.
     DO 283 K=1,N
     R(T,K)=R(K,I)
     R(J,K)=P(K,J)
 293 CONTINUE
  42 CONTINUE
 284 CONTINUE
     IF(P-AB)44,43,43
  44 CONTINUE
35
     CONTINUE
  43 CONTINUE
     IF(LI-1)45,46,45
  45 CONTINUE
  36 CONTINUE
  46 CONTINUE
     DO 332 I=1,L1
332
     D(1) = R(1,1)
     RETURN
     END
```

```
SORIGIN
                ALPHA
$IBFTC RARE1
      SUBROUTINE RARE
      DIMENSION R(80,80), AM(80,30), UM(80,30), WM(110,30)
     *, D(80), U(8C)
     *, A( 150)
     *, AA(150)
     *, DE(80), DA(80)
     *,UE(80)
      COMMON P, NL, N, NF, L, KL, KKL, KK2L, NA, E1, EF, KK3L, HH, KKK
     *,NC,FF1,FF2,LL1
     *,PD,QD,PW
     *, NF1
     *,TIM
     *,L1
     *, LLA, NP, LIB, LIE, LB, LE, JI
      TIM1=TIME(2)
      DO 701 I=1,N
      RFAD(2)(R(I,J),J=1,N)
 701 CONTINUE
      REWIND 2
      00 702 J=1,L
      READ(4)(AM(I, J), I=1,N)
 702 CONTINUE
      REWIND 4
      DO 63 I=1,N
      DE(1)=1.
      DO 61 J=1,L
      DE(I)=DE(I)+AM(I,J)**2
   61 CONTINUE
      D(I)=1./SQRT(DE(I))
      DO 62 J=1,L
      (L,I) PA*(I) O=(L,I) MA
  62 CONTINUE
      DA( I) = ( DE( I) - 1 . ) / DE( I )
      DE(I)=1.-CA(I)
      D(I)=PD*DE(I)+QD*DA(I)
  63 CONTINUE
      LN=L+N
      DO 347 KKK=1,KKL
      CALL RARFDIR, UM, AM, WM, D, N, L, LN, U, KKK, KKL, AL
     *, EF
     *,UF
     *,C2
     *, ALM
     *, PD, PW, QD, CA, DE)
      AKK=KKK
      AA(KKK)=ALM
      A(KKK)=C2
      IF(P-AL)347,347,3471
347 CONTINUE
3471 CONTINUE
      WRITE(6,908)(AA(I),I=1,KKK)
      WR [ TE(6, 992 )
 992 FORMAT(//)
      WRITE(6,908)(A(I),I=1,KKK)
 908 FORMAT(10F8.4)
```

```
TIM2=TIME(2)
     TIM=TIM2-TIM1
     WRITE(8)C2,AKK,TIM
     WRITE(8)(WM(I, I), I=1,LI)
     S1=0.
     DO 30 1=1,N
     D( I ) = SIGN( 1 . . AM( I . 1 ) )
     SI=SI+D(I)
  30 CONTINUE
     SI=SIGN(1.,SI)
     DO 34 T=1.N
     D(1)=D(1)*S1
     00 32 J=1,L
     IR = (L, I)MA = (L, I)MA
  32 CONTINUE
     WRITE(8)D(1),DA(1),DE(1),(AM(1,J),J=1,LT)
  34 CONTINUE
     DO 1111 J=1,L
     WRITE(3)(AM(I,J),I=1,N)
1111 CONTINUE
     REWIND 3
     RETURN
      EN D
```

\$IBFTC RARED1

```
SUBROUTINE RAREDIR, UM, AM, WM, D, N, L, LN, U, KKK, KKL, AL
    *.EE
    *.UE
    *.C2
    +, ALM
    *,PD,PW,QD,CA,DE1
    DIMENSION R(80,1), UM(80,1), AM(80,1), WM(110,1), D(80), U(80)
    *.DE(80).DA(80)
    *, UE(80)
     00 315 I=1.N
     R(1,1)=1.-PW*DE(1)
     00 315 J=1,L
315 UM(I,J) = (AM(I,J) / D(I))
     DO 321 T=1.N
     IL = I + L
     DO 321 J=1,L
     WM( IL , J )=0.
     DO 321 K=1.N
721 WM(IL,J) = WM(IL,J) + R(I,K) * UM(K,J)
     no 328 I=1.L
     09 328 J=I,L
     WM(1,J) = 0.0
     no 327 K=1,N
     KL = K + L
327 kM(T,J) = kM(T,J) + kM(KL,T) * UM(K,J)
 328 WM(J, 11=1 '(1,J)
     C1=0.
     79 2 1=1.6
     C1=C1+WM(I,I)
  2 CONTINUE
     00 336 K=1,L
     S = 1.7/SQRT(W4(K_1K))
     00 331 T=K.LN
531 WM(I,K) = WM(I,K) * S
     K1 = K + 1
     IF (L-K) 343, 343, 334
334
     30 436 7=K1+F
     79 336
             1=J, LN
536 WM([,1] = KM([,1] - WM([,K] + WM(J,K]
 343 CONTINUE
     00 705 T=1.N
     DE( 1) = 1 .
     11=1+1
     100 701 J=1,L
     DE( [ ]=DF( [ ]-W41[L.J)**?
 701 CONTINUE
     1F(FF-DF(1))704,702,702
 702 CONTINUE
     00=S981([1.-FF]/(1.-DF(1)))
     DO 703 J=1,L
     GO+(L, J) +WH (L, J) +MH
 703 CONTINUE
     DFI 11=FF
 704 CONTINUE
     04(1)=1.-DE(1)
```

```
UE(I)=DE(I)
    D(I)=PD*DE(I)+QD*DA(I)
    U([]=D(])
705 CONTINUE
    AL=C2
    HH=0.
    H1 = ((1.-PW+DE(N))/D(N))++2
    N1=N-1
    DO 11 [=1,N1
    H1=H1+((1.-PW*DE(I))/D(I))**2
    []=[+]
    00 11 J=11.N
    H=R(1,J)
 11 HH=HH+H**2/(D(I)*D(J))
    HH=+1+2.*HH
    C2=C1/HH
    ALM=0.
    00 711 I=1,N
    [L=[+L
    00 710 J=1,L
    ALM=AMAXI(ALM, ABS(AM(I, J)-WM(IL, J)))
    (L, JI) MW=(L, I) MA
710 CONTINUE
711 CONTINUE
    AL = AHS(AL-C2)
    RETURN
    END
```

```
$ORIGIN
                ALPHA
SIBFTC SIMP1
      SUBROUTINE SIMP
      DIMENSION A(80,30), A1(80,30), E(30,30)
     *,B(80,30),S(30,30),H(30,30),D(80)
     *, D1(80)
     *,02(80)
     *,DD(80)
     *, BC(80,30)
     *,G(80,30)
     *,DL(30)
     *, CB(30)
     *, DF(30)
      COMMON P,NL,N,NF,L,KL,KKL,KK2L,NA,EI,EE,KK3L,HH,KKK
     *,NC,FF1,FF2,LL1
     *,PD,QD,PW
     *,NF1
     *,TIM
     *, [[
     *,LLA,NP,LIB,LIE,LB,LE,JI
      4=L
      FMM=M
      FN =N
      LLE=2
      LLE=4
      LLE=3
      LLF=NL
      LL9=1
      LLF=9
      LLF=1
      LLF=10
      LLE = 5
      LL5=20
      ML = 4
      4L = 3
      ML = 1
      ML = 2
      NN=0
      DO 41 LLL=1.NF1
      002 J=1,M
      (M.[=],fL,TJA)(F)CE34
    2 CONTINUE
      REWIND 3
      00 5º I=1.N
      DD(1)=0.
      00 51 J=1.M
      $**(L,1)A+(1)70=(1)0C
   51 CONTINUE
      nottl=SQRT(DD(1))
      DO 52 J=1.M
      IFINN1511,510,511
  510 CONTINUE
      (1)COVIL, I)A = IL, I)A
  511 CONTINUE
      9(1,J)=A(1,J)
   52 CONTINUE
   53 CONTINUE
```

```
F1=0.
   DO 42 LLL4=LLB,LLE
   ALL=LLL4
   FM=LLL4+ML
   F=2.*FM/(2.*FM-1.)
   FP1=F+1.
   FFF=1./(F-3.)
   DO 82 J=1.M
   DF(J)=D(J)
   DO 82 I=1,N
   G(I,J)=B(I,J)
92 CONTINUE
   F1=0.
   DO 20 LL=1,NL
   AL=LI
   D7 4 J=1, M
   D1(J)=0.
   D(J)=0.
   00.3 I=1.N
   D1(J)=D1(J)+9([,J)++4
   D(J)=D(J)+ABS(8(1,J))++FPI
 3 CONTINUE
   D(J)=(D1(J)/D(J))++FFF
   01(J)=0(J)
   DO 4 I=1.N
   B(I.J)=6(I.J)*D(J)
 4 CONTINUE
   00 7 (=1.N
   2111=0.
   PO 6 J=1,4
   D(1)=D(1)+B(1,J)++2
 6 CONTINUE
   00 7 J=1,M
   (L,1) A + (1) D = (L,1) [ A
   AC(1.1)=A85(8(1.1))==F
 7 CONTINUE
   00 9 1=1,M
   nn o J=1,4
   S[1,J]=0.
   5(1.J)=0.
   90 8 K=1,N
   F(1,J)=F(1,J)+A(K,1)+BC(K,J)
 8 CONTINUE
 9 CONTINUE
  CALL SYMINIS, WI
   OO 10 1=1.M
   90 10 Jal.M
  HI1,J1=0.
   20 10 K=1.M
  H(1,J)=H(1,J)+S(1,K)+F(K,J)
10 CONTINUE
  C=0.
  C1=0.
  M 240 J=1,K
  D(J)=0.
```

```
D() 23 I=1,M
   D(J)=D(J)+H(1,J)**2
23 CONTINUE
    D(J)=SQRT(D(J))
    C=C+D(J)
    00 24 I=1,M
   4(1,J)=H(1,J)/D(J)
24 CONTINUE
    J(J)=D(J)/U(J)
    C1=C1+D(J)
240 CONTINUE
    C=C/FMM
    C1=C1/FMM
    no 26 J=1.M
    DO 25 I=1.N
    9(1,J)=0.
    00 251 K=1.M
    H([,J)=B([,J)+A([,K)*H(K,J)
251 CONTINUE
 25 CONTINUE
 26 CONTINUE
    F?=F1
    F1=C
    [F(P-(ARS(E)-F2))+7-1527,528,528
522 CONTINUE
 20 CONTINUE
529 CONTINUE
    LLA=LL14
    ARITE(BIC, Cl, AL, ALL
    F7=F1
    FI=C
    1F(P-(485(F1-F2))+2.17C0,758,708
700 CONTINUE
    AMEZ. OFMN
    00 404 J=1.4
    URIJI=0.
    DO 403 1=1.N
    [F(R([,J]+P)40],402,40?
401 CONTINUE
    141L183=(L180
402 CONTINUE
403 CONTINUE
     IILIRO, WAIIHIMA *MA
40% CONTINUE
     14144-441594,546,40
246 CONTINUE
 42 CONTINUE
 40 CONTINUE
     IFIALL-1.1702,706,702
TOS CONTINUE
     100 704 J=1,M
     DIJI=DFIJI
     00 704 1=1.N
     4(1,J)=G[1,J)
714 CONTINUE
 704 CONTINUE
```

1

```
708 CONTINUE
    IF(NN)321,320,321
320 CONTINUE
    00 34 1 =1.8
    DO 34 J =1,M
    9(I,J)=DD(I)*8(I,J)
34 CONTINUE
321 CONTINUE
    00 36 I = 1.N
    WRITE(8)(B(I,J),J=1,LI)
 36 CONTINUE
    WRITE(8)(D(J), J=1,LI)
    NN=1
 41 CONTINUE
    RETURN
    END
```

SIBFTC SYMI?

```
SUBROUTINE SYMI3 (S.N)
      DIMENSION S(30,30)
38
      N1 = N-1
01
      DO 04 I = 2.N
02
      I1 = I-1
03
      DO 04 J = 1,11
04
      S11,J1 = 0.
  10 C = 1./SQRT(S(1,1))
11
      S(1,1) = 1.
      DO 13 J=1,N
12
13
      S(1,J) = S(1,J) * C
     DO 21 K=2,N
14
     DO 17 J=1,N
15
151 K1 = K-1
     DO 17 I=1.K1
16
     S(K,J) = S(K,J) - S(I,K) * S(I,J)
17
  19 C = 1./SQRT(S(K,K))
     DN 191 I=1.K1
19
191
     S(1,K) = 0.
192
     S(K,K) = 1.
20
     DO 21 J=1,N
21
     S(K_*J) = S(K_*J) * C
25
     100.30 J=2.N
26
     J1 = J-1
27
     00 30 I=1, J1
29
     DO 30 K=J,N
30
     S(I,J) = S(I,J) + S(K,I) + S(K,J)
31
     DO 35 J=1,N1
32
     S** (L, L) = S(J, J) **2
33
     J2 = J+1
     DO 35 I=J2.N
34
35
     S(J_1J_1) = S(J_1J_1) + S(I_1J_2 * 2
     S(N,N) = S(N,N)**2
351
30
     DO 42 I=1,N1
40
     I2 = I+1
     00 42 J=12,N
41
42
     S(1,1) = S(1,1)
     RETURN
     END
```

```
SORIGIN
                ALPHA
SIBFTC DUPLI1
      SUBROUTINE CUPLI
      DIMENSION A(80,30),D(80),DA(80),DE(80),JI(80)
     *.D1(80)
      COMMON P.NL.N.NF.L.KL.KKL.KKZL.NA.EI.EE.KK3L.HH.KKK
     *,NC,FF1,FF2,LL1
     *, PD, QD, PW
     *.NFI
     *,TIM
     *,LI
     *, LLA, NP, LIB, LIE, LB, LE, JI
      NS=6
      NS=4
      MS=1
      MS=2
      DO 26 LS=1,NS
      L7≈0
      00 24 LLL=1,NP
      WRITE16,9991
  999 FORMAT(141)
      DO 22 LLI=LIB, LIE
      00 20 LL=L8,1 E
      WRITE(6,996)
  996 FURMAT(///)
      L7=L7+1
      READ(8)LLL,N,LI,LLI,LL,NF1
      READ(8)C2, AKK, TIM
      READ(8)(D(I), I=1,LI)
      WRITE(6,901)LLL,N,LI,LLI,LL,NF1,C2,AKK,TIM,(D(I),I≈1,LI)
  901 FORMAT(614,3X,3F7.3,3X,7F10.3)
      WRITE(6,997)
  997 FORMAT(1H )
      DO 2 I=1.N
      REAC(8)D1(1),DA(1),DE(1),(A(1,J),J=1,L1)
    2 CONTINUE
      IF(LI-1)8,15,8
    8 CONTINUE
      LLA=JI(L7)
      00 4 I=1,LLA
      READ(8)C,Cl,AL,ALL
      WRITE(6,902 IC, C1, AL, ALL
  902 FORMAT(5F7.3)
    4 CONTINUE
      WRITE(6,997)
      00 14 I=1,N
      READ(8)(D(J),J=1,LI)
      WRITE(6,905)(D(J),J=1,L1)
  905 FORMAT(78X,7F7.3)
      WRITE(6,906)1,D1(1),DA(1),DF(1),(A(1,J),J=1,LI)
  906 FORMAT(1H+,13,1X,1F4.0,1X,2F7.3,2X,7F7.3)
   14 CONTINUE
      WR [TE16, 997]
      READ(8)(D(J), J=1,LI)
      WRITE(6,904)(D(J),J=1,L[)
  904 FORMAT(2X, 7F7.2)
      GO TO 18
```

		and the second s	
15	CONTINUE		
	00 16 I=1.N		
	WRITE(6, 903 17, D1(1), D/	$A(I)_{\bullet}DE(I)_{\bullet}(A(I_{\bullet}J)_{\bullet}J=I_{\bullet}I)$	
903	FORMAT(13, 1x, 1F4.0, 1X		
16	CONTINUE		
18	CONTINUE		
20	CONTINUE		
22	CONTINUE		
24	CONTINUE		
	WRITE(6,999)		
	PEWIND 8		
26	CONT INUE		
	RETURN		2.2
	END		

•

BIBLIOGRAPHY

- Anderson, T. W., and Rubin, H. Statistical inference in factor analysis. In J. Neyman (Ed.), Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, Vol. V. Berkeley: University of California Press, 1956, 111-150.
- Bargmann, R. Factor analysis program for 7090, preliminary version. Internal Document, 2-126, 1963. Yorktown Heights, N.Y.: IEM Center.
- Bechtold, H. P. An empirical study of the factor analysis stability hypothesis. Psychometrika, 1961, 26, 405-432.
- Browne, M. W. Fitting the factor analysis model. Research Bulletin, Jan. 1967. Princeton, N.J.: Educational Testing Service.
- Burket, G. R. A study of reduced rank models for multiple prediction. <u>Psychometric</u> Monographs, No. 12, 1964.
- Carroll, J. B. An analytical solution for approximating simple structure in factor analysis. Psychometrika, 1953, 18. 23-38.
- Cattell, R. B. Personality and motivation: structure and measurement. New York: Harcourt, Brace, 1957.
- Clemans, W. V. An analytical and empirical examination of some properties of ipsative measures. Psychometric Monographs, No. 14, 1966.
- Comrey, A. L. The minimum residual method of factor analysis. Psychological Reports, 1962, 15-18.
- Coombs, C. H., and Kao, R. C. On a connection between factor analysis and multidimensional unfolding Pschometrika, 1960, 25, 219-231.
- Davis, F. B. Fundamental factors of comprehension in reading. Psychometrika, 1944, 9, 185-197.
- Guttman, L. Image theory for the structure of quantitative variates. <u>Psychometriks</u>, 1953, 18, 277-296.
- Guttman, L. A generalized simplex for factor analysis. Psychometrika, 1955(a), 20, 173-192.
- Guttman, L. The determinacy of factor score matrices with implications for five other basic problems of common-factor theory. British Journal of Statistical Psychology, 1955(b), 8, 65-82.
- Hammond, W. H. An application of Burt's multiple general factor analysis to the delineation of physical types. Man, 1942, 4-11.
- Harmon, H. H. Modern factor analysis. Chicago: University of Chicago Press, 1967.
- Harris, C. W. On factors and factor scores. Psychometrika, 1957, 32, 363-379.

- Hemmerle, W. J. Obtaining maximum likelihood estimates of factor loadings and communalities using an easily implemented iterative procedure. Psychometrika, 1965, 30, 291-302.
- Holzinger, K. J., and Harmon, H. H. <u>Factor analysis</u>. Chicago: University of Chicago Press, 1941.
- Holzinger, K. J., and Swineford, F. A study in factor analysis: The stability of a bi-factor solution. Supplementary Educational Monographs, No. 48. Chicago: Dept. of Education, University of Chicago, 1939.
- Horst, P. The prediction of personal adjustment. Social Science Research Bulletin 48, 1941.
- Horst, P. Matrix algebra for social scientists. New York: Holt, Rinehart and Winston, 1963.
- Horst, P. Factor analysis of data matrices. New York: Holt, Rinehart and Winston, 1965.
- Horst, P. Personality: measurement of dimensions. San Francisco: Jossey-Bass, 1968(a).
- Horst, P. Residual variance scaling and matrix approximation. Psychological Reports, 1968(b), 22, 415-430.
- Horst, P. Configural analysis and pattern recognition. <u>Journal of Clinical</u>
 Psychology, 1968(c), 24, 383-405.
- Jöreskog, K. G. Some contributions to maximum likelihood factor analysis. Psychometrika, 1967, 32, 443-482.
- Kaiser, H. F. The varimax criterion for analytic rotation in factor analysis. Psychometrika, 1958, 23, 187-200.
- Kaiser, H. F., and Caffrey, J. Alpha factor analysis. Psychometrika, 1965, 30, 1-14.
- Lawley, D. N. The estimation of factor loadings by the method of maximum likelihood. Proceedings of the Royal Society of Edinburgh, Section A, 1940, 60, 64-82.
- Leiman, J. M. The calculation of regression weights from common factor loadings. Unpublished doctoral dissertation, University of Washington, 1951.
- Lord, F. M. A study of speed factors in tests and academic grades. Psychometrika, 1956, 21, 31.50.
- McDonald, R. P. and Burr, E. J. A comparison of four methods of contructing factor scores. Psychometrika, 1967, 32, 381-401.
- Mullen, F. Factors in the growth of girls seven to seventeen years of age. Unpublished doctoral dissertation, Dept. of Education, University of Chicago, 1939.

- Neuhaus, J. O., and Wrigley, C. The quartimax method: an analytical approach to orthogonal simple structure. British Journal of Statistical Psychology, 1954, 7, 81-91.
- Rao, C. R. Estimation and tests of significance in factor analysis. Psychometrika, 1955, 20, 93-111.
- Ross, J., and Cliff, N. A generalization of the interpoint distance model. Psychometrika, 1964, 29, 167-176.
- Saunders, D. R. An analytic method for rotation to orthogonal simple structure. Research Bulletin, RB 53-10, 1953. Princeton, N.J.: Educational Testing Service.
- Thomson, G. H. The factorial analysis of human ability. Boston: Houghton Mifflin Co., 1950.
- Thurstone, L. L. Factor analysis and body types. Psychometrika, 1946, 11, 15-21.
- Thurstone, L. L. Multiple factor analysis. Chicago: University of Chicago Press, 1947.
- Thurstone, L. L. and Thurstone, L. G. Factorial studies of intelligence. Psychometric Monographs No. 2, 1941.
- Tucker, L. R. Determination of parameters of a functional relation by factor analysis. Psychometrika, 1958, 23, 19-23.
- Tucker, L. R. Implications of factor analysis of three-way matrices for measurement of change. In Chester Harris, et al., Problems in measuring change, Madison, Wis.: University of Wisconsin Press, 1963, 122-137.

Security Classification			
DOCUMENT CONT			
Security classification of title, body of abstract and indexing annotation and ting activity (Corporate author)		2a. REPORT SECURITY CLASSIFICATION None	
University of Washington, Seattle, Was	2b. GROUP		
3 REPORT TITLE		 	
Generalized Factor Analysis: Part II	Applicatio	ns	
4. DESCRIPTIVE NOTES (Type of report and, inclusive dates)			
Does not apply			
5 AUTHOR(S) (First name, middle initial, last name)			
Faul Horst			1
6 REPORT DATE	78. TOTAL NO. O	FPAGES	75. NO. OF REFS
May 1969	98		44
BE. CONTRACT OR GRANT NO.	98. ORIGINATOR'S REPORT NUMBER(S)		
Office of Naval Research Contract b. PROJECT NO. Nonr-477(33)) N	on e	
None			
c.	9b. OTHER REPORT NO(\$) (Any other numbers that may be assigned this report)		
d. None	None		
IC DISTRIBUTION STATEMENT			
This document has been approved for is unlimited.	public rela	ease and sa	le; its distribution
11 SUPPLEMENTARY NOTES	12. SPONSORING	MILITARY ACTIV	VITY
None	Office of Naval Research		
13 ABSTRACT			
This document is Part II of a two-p	ert report.	In Part I	a generalized scale

This document is Part II of a two-part report. In Part I a generalized scale free factor analysis method with variable loss function was developed, and new rationales for simple structure transformation and computation of factor scores were developed. In this report, the techniques are applied to twelve different data sets, including some of the classical sets reported in the literature by other investigators. Computer program listings are included.

DD FORM 1473 (PAGE 1)

S/N 0101-807-6811

Security Classification

A-31400

Security Classification LINK C KEY WORDS ROLE ROLE WT ROLE Scale Free Factor Analysis Oblique Rotations Simple Structure Canonical Factor Analysis Minres Factor Analysis Alpha Factor Analysis Principal Axis Factor Analysis

DD 1000 1473 (BACK)

Security Classification

A-11409